Strong Magnetic Coupling and Single-Molecule-Magnet Behavior in Lanthanide-TEMPO Radical Chains

Abstract : The rational design of molecular chains made of 4f ions and substituted 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) radical is presented. The reaction of Ln(hfac)·2HO (hfac = hexafluoroacetylacetonate) and the 4-cyano-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO-CN) radical affords air- and moisture-stable isostructural molecular chains of the formula [Ln(hfac)TEMPO-CN] for Ln = Gd and Tb, whereas zero-dimensional complexes of the formula [Dy(hfac)(TEMPO-CN)][Dy(hfac)(HO)] are obtained for Ln = Dy. To the best of our knowledge, the Gd derivative, Gd-TEMPO-CN, shows one of the strongest antiferromagnetic (AF) couplings for Gd-radical pairs ever reported with J/ k = -21.18 K, 14.72 cm ( H = - JS S spin Hamiltonian convention). The Tb derivative, Tb-TEMPO-CN, also shows strong Tb-radical AF coupling, which has been rationalized using the ab initio CASSCF approach ( J = -23.02 K, -16.7 cm) and confirmed by luminescence measurements. Tb-TEMPO-CN shows remarkable properties for a Tb-radical-based single-molecule magnet ( U = 69.3 ± 1 K; τ = 1.3 × 10 s) and two different relaxation processes triggered by interchain magnetic coupling.
Document type :
Journal articles
Complete list of metadatas

Cited literature [20 references]  Display  Hide  Download

https://hal-univ-rennes1.archives-ouvertes.fr/hal-01862460
Contributor : Laurent Jonchère <>
Submitted on : Thursday, September 13, 2018 - 3:29:24 PM
Last modification on : Thursday, February 7, 2019 - 3:51:25 PM

File

Bernot_Strong Magnetic Couplin...
Files produced by the author(s)

Identifiers

Citation

Gang Huang, Carole Daiguebonne, Guillaume Calvez, Yan Suffren, Olivier Guillou, et al.. Strong Magnetic Coupling and Single-Molecule-Magnet Behavior in Lanthanide-TEMPO Radical Chains. Inorganic Chemistry, American Chemical Society, 2018, 57 (17), pp.11044-11057. ⟨10.1021/acs.inorgchem.8b01640⟩. ⟨hal-01862460⟩

Share

Metrics

Record views

142

Files downloads

63