G. J. Dockray, Gastrointestinal hormones and the dialogue between gut and brain: Gutbrain signalling, J Physiol, vol.592, pp.2927-2941, 2014.
DOI : 10.1113/jphysiol.2014.270850

URL : http://onlinelibrary.wiley.com/doi/10.1113/jphysiol.2014.270850/pdf

H. E. Raybould, Mechanisms of CCK signaling from gut to brain, Curr Opin Pharmacol, vol.7, pp.570-574, 2007.

G. De-lartigue, R. Dimaline, A. Varro, and G. J. Dockray, Cocaine-and Amphetamine-Regulated Transcript: Stimulation of Expression in Rat Vagal Afferent Neurons by Cholecystokinin and Suppression by Ghrelin, J Neurosci, vol.27, pp.2876-2882, 2007.

C. A. Campos, J. S. Wright, K. Czaja, and R. C. Ritter, CCK-induced reduction of food intake and hindbrain MAPK signaling are mediated by NMDA receptor activation, Endocrinology, vol.153, pp.2633-2646, 2012.

G. De-lartigue, C. Barbier-de-la-serre, and E. Espero, Leptin Resistance in Vagal Afferent Neurons Inhibits Cholecystokinin Signaling and Satiation in Diet Induced Obese Rats, PLoS ONE, vol.7, 2012.

F. A. Duca, L. Zhong, and M. Covasa, Reduced CCK signaling in obese-prone rats fed a high fat diet, Horm Behav, vol.64, pp.812-817, 2013.
DOI : 10.1016/j.yhbeh.2013.09.004

URL : https://hal.archives-ouvertes.fr/hal-01204282

C. H. Warden and J. S. Fisler, Comparisons of Diets Used in Animal Models of High-Fat Feeding, Cell Metab, vol.7, p.277, 2008.

M. A. Pellizzon and M. R. Ricci, The common use of improper control diets in diet-induced metabolic disease research confounds data interpretation: the fiber factor, Nutr Metab, vol.15, 2018.

B. Chassaing, J. Miles-brown, and M. Pellizzon, Lack of soluble fiber drives diet-induced adiposity in mice, Am J Physiol-Gastrointest Liver Physiol, vol.309, pp.528-541, 2015.

M. J. Dalby, A. W. Ross, A. W. Walker, and P. J. Morgan, Dietary Uncoupling of Gut Microbiota and Energy Harvesting from Obesity and Glucose Tolerance in Mice, Cell Rep, vol.21, pp.1521-1533, 2017.

A. C. Vaughn, E. M. Cooper, and P. M. Dilorenzo, Energy-dense diet triggers changes in gut microbiota, reorganization of gut-brain vagal communication and increases body fat accumulation, Acta Neurobiol Exp (Warsz), vol.77, pp.18-30, 2017.

T. Sen, C. R. Cawthon, and B. T. Ihde, Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity, Physiol Behav, vol.173, pp.305-317, 2017.
DOI : 10.1016/j.physbeh.2017.02.027

URL : http://europepmc.org/articles/pmc5428886?pdf=render

M. Guerville and G. Boudry, Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation, Am J Physiol-Gastrointest Liver Physiol, vol.311, pp.1-15, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01404561

G. De-lartigue, C. Barbier-de-la-serre, and E. Espero, Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons, Am J Physiol-Endocrinol Metab, vol.301, pp.187-195, 2011.

C. B. De-la-serre, G. De-lartigue, and H. E. Raybould, Chronic exposure to Low dose bacterial lipopolysaccharide inhibits leptin signaling in vagal afferent neurons, Physiol Behav, vol.139, pp.188-194, 2015.

C. R. Cawthon, L. De, and C. B. Serre, Gut bacteria interaction with vagal afferents, Brain Res, 2018.
DOI : 10.1016/j.brainres.2018.01.012

F. Dieterle, A. Ross, G. Schlotterbeck, and H. Senn, Metabolite Projection Analysis for Fast Identification of Metabolites in Metabonomics. Application in an Amiodarone Study, Anal Chem, vol.78, pp.3551-3561, 2006.

K. A. Veselkov, J. C. Lindon, and T. Ebbels, Recursive Segment-Wise Peak Alignment of Biological 1 H NMR Spectra for Improved Metabolic Biomarker Recovery, Anal Chem, vol.81, pp.56-66, 2009.

O. Cloarec, M. E. Dumas, and J. Trygg, Evaluation of the Orthogonal Projection on Latent Structure Model Limitations Caused by Chemical Shift Variability and Improved Visualization of Biomarker Changes in 1 H NMR Spectroscopic Metabonomic Studies, Anal Chem, vol.77, pp.517-526, 2005.

M. Estaki, D. Decoffe, and D. L. Gibson, Interplay between intestinal alkaline phosphatase, diet, gut microbes and immunity, World J Gastroenterol, vol.20, pp.15650-15656, 2014.
DOI : 10.3748/wjg.v20.i42.15650

URL : http://doi.org/10.3748/wjg.v20.i42.15650

B. Benoit, P. Plaisancié, and M. Awada, High-fat diet action on adiposity, inflammation, and insulin sensitivity depends on the control low-fat diet, Nutr Res, vol.33, pp.952-960, 2013.
DOI : 10.1016/j.nutres.2013.07.017

URL : https://hal.archives-ouvertes.fr/hal-01002234

J. W. Apolzan and R. Harris, Differential effects of chow and purified diet on the consumption of sucrose solution and lard and the development of obesity, Physiol Behav, vol.105, pp.325-331, 2012.

J. R. Vasselli, P. J. Scarpace, R. Harris, and W. A. Banks, Dietary components in the development of leptin resistance, Adv Nutr Bethesda Md, vol.4, pp.164-175, 2013.

M. Guerville, A. Leroy, and A. Sinquin, Western-diet consumption induces alteration of barrier function mechanisms in the ileum that correlates with metabolic endotoxemia in rats, Am J Physiol-Endocrinol Metab, vol.313, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01580160

J. Lallès, Intestinal alkaline phosphatase: novel functions and protective effects, Nutr Rev, vol.72, pp.82-94, 2014.

M. Storr, H. J. Vogel, and R. Schicho, Metabolomics: is it useful for inflammatory bowel diseases?, Curr Opin Gastroenterol, vol.29, pp.378-383, 2013.

Y. Hong, Y. Ahn, and J. Park, 1H NMR-based metabonomic assessment of probiotic effects in a colitis mouse model, Arch Pharm Res, vol.33, pp.1091-1101, 2010.

J. T. Bjerrum, Y. Wang, and F. Hao, Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn's disease and healthy individuals, Metabolomics, vol.11, pp.122-133, 2015.
DOI : 10.1007/s11306-014-0677-3

URL : https://link.springer.com/content/pdf/10.1007%2Fs11306-014-0677-3.pdf

C. L. Adam, P. A. Williams, and M. J. Dalby, Different types of soluble fermentable dietary fibre decrease food intake, body weight gain and adiposity in young adult male rats, Nutr Metab, vol.11, p.36, 2014.

C. L. Adam, P. A. Williams, and K. E. Garden, Dose-Dependent Effects of a Soluble Dietary Fibre (Pectin) on Food Intake, Adiposity, Gut Hypertrophy and Gut Satiety Hormone Secretion in Rats, PLOS ONE, vol.10, 2015.

M. Levrat, C. Rémésy, and C. Demigné, High Propionic Acid Fermentations and Mineral Accumulation in the Cecum of Rats Adapted to Different Levels of Inulin, J Nutr, vol.121, pp.1730-1737, 1991.

F. Respondek, P. Gerard, and M. Bossis, Short-Chain Fructo-Oligosaccharides Modulate Intestinal Microbiota and Metabolic Parameters of Humanized Gnotobiotic Diet Induced Obesity Mice, PLoS ONE, vol.8, p.71026, 2013.
DOI : 10.1371/journal.pone.0071026

URL : https://hal.archives-ouvertes.fr/hal-01190544

A. M. Neyrinck, V. F. Van-hée, and N. Piront, Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice, Nutr Diabetes, vol.2, pp.28-28, 2012.
DOI : 10.1038/nutd.2011.24

URL : http://www.nature.com/nutd/journal/v2/n1/pdf/nutd201124a.pdf

A. C. Nicolucci, M. P. Hume, and I. Martínez, Prebiotics Reduce Body Fat and Alter Intestinal Microbiota in Children Who Are Overweight or With Obesity, Gastroenterology, vol.153, pp.711-722, 2017.
DOI : 10.1053/j.gastro.2017.05.055

URL : https://doi.org/10.1053/j.gastro.2017.05.055

L. Brooks, A. Viardot, and A. Tsakmaki, Fermentable carbohydrate stimulates FFAR2dependent colonic PYY cell expansion to increase satiety, Mol Metab, vol.6, pp.48-60, 2017.
DOI : 10.1016/j.molmet.2016.10.011

URL : https://doi.org/10.1016/j.molmet.2016.10.011

J. Zou, B. Chassaing, and V. Singh, Fiber-Mediated Nourishment of Gut Microbiota Protects against Diet-Induced Obesity by Restoring IL-22-Mediated Colonic Health, Cell Host Microbe, vol.23, pp.41-53, 2018.
DOI : 10.1016/j.chom.2017.11.003

E. M. Dewulf, P. D. Cani, and S. P. Claus, Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women, Gut, vol.62, pp.1112-1121, 2013.

M. K. Hamilton, C. C. Ronveaux, and B. M. Rust, Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice, Am J Physiol-Gastrointest Liver Physiol, vol.312, pp.474-487, 2017.

H. Goto, N. Takemura, and T. Ogasawara, Effects of Fructo-Oligosaccharide on DSSInduced Colitis Differ in Mice Fed Nonpurified and Purified Diets1,2, J Nutr, vol.140, pp.2121-2127, 2010.

J. P. Miles, J. Zou, and M. Kumar, Supplementation of Low-and High-fat Diets with Fermentable Fiber Exacerbates Severity of DSS-induced Acute Colitis, Inflamm Bowel Dis, vol.23, pp.1133-1143, 2017.

P. Van-den-abbeele, P. Gérard, and S. Rabot, Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats: Prebiotics modulate mucosal and luminal microbiota summary, Environ Microbiol, vol.13, pp.2667-2680, 2011.

P. D. Cani, S. Possemiers, and T. Van-de-wiele, Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability, Gut, vol.58, pp.1091-1103, 2009.

Z. Dai, G. Wu, and W. Zhu, Amino acid metabolism in intestinal bacteria: links between gut ecology and host health, Front Biosci Landmark Ed, vol.16, pp.1768-1786, 2011.
DOI : 10.2741/3820

J. Ju?kiewicz and Z. Zdu?czyk, Effects of cellulose, carboxymethylcellulose and inulin fed to rats as single supplements or in combinations on their caecal parameters, Comp Biochem Physiol A Mol Integr Physiol, vol.139, pp.513-519, 2004.

N. Salazar, E. M. Dewulf, and A. M. Neyrinck, Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women, Clin Nutr, vol.34, pp.501-507, 2015.
DOI : 10.1016/j.clnu.2014.06.001

URL : https://digital.csic.es/bitstream/10261/143026/1/accesoRestringido.pdf

T. Teixeira, ?. Grze?kowiak, and S. Franceschini, Higher level of faecal SCFA in women correlates with metabolic syndrome risk factors, Br J Nutr, vol.109, pp.914-919, 2013.