P. Almond, Postnatal depression: A global public health perspective, Perspectives in Public Health, vol.177, issue.7, pp.221-227, 2009.
DOI : 10.1017/S0033291799002974

H. Burke, Depression and cortisol responses to psychological stress: A meta-analysis, Psychoneuroendocrinology, vol.30, issue.9, pp.846-856, 2005.
DOI : 10.1016/j.psyneuen.2005.02.010

B. Leung and B. Kaplan, Perinatal Depression: Prevalence, Risks, and the Nutrition Link???A Review of the Literature, Journal of the American Dietetic Association, vol.109, issue.9, pp.1566-1575, 2009.
DOI : 10.1016/j.jada.2009.06.368

J. Pawluski, The Neurobiology of Postpartum Anxiety and Depression. Trends in Neurosciences, 2017.

T. Oberlander and L. Zwaigenbaum, Disentangling Maternal Depression and Antidepressant Use During Pregnancy as Risks for Autism in Children, JAMA, vol.317, issue.15, pp.1533-1534, 2017.
DOI : 10.1001/jama.2017.3414

T. Oberlander, Neonatal Outcomes After Prenatal Exposure to Selective Serotonin Reuptake Inhibitor Antidepressants and Maternal Depression Using Population-Based Linked Health Data, Archives of General Psychiatry, vol.63, issue.8, pp.898-906, 2006.
DOI : 10.1001/archpsyc.63.8.898

W. Cooper, Increasing use of antidepressants in pregnancy, Am J Obstet Gynecol, vol.196, pp.544-541, 2007.

S. Gentile, The Safety of Newer Antidepressants in Pregnancy and Breastfeeding, Drug Safety, vol.9, issue.3, pp.137-152, 2005.
DOI : 10.2165/00002018-200528020-00005

R. Hayes, 2012 Maternal antidepressant use and adverse outcomes: a cohort study of 228,876 pregnancies, Am J Obstet Gynecol, vol.207, pp.49-90

R. Charlton, Selective serotonin reuptake inhibitor prescribing before, during and after pregnancy: a population-based study in six European regions, BJOG: An International Journal of Obstetrics & Gynaecology, vol.18, issue.7 Suppl, pp.1010-1020
DOI : 10.1007/s10995-014-1486-z

H. Zoega, 2015 Use of SSRI and SNRI Antidepressants during Pregnancy: A Population-Based Study from Denmark, Iceland, Norway and Sweden, PLoS One, vol.10

A. Lupattelli, 2014 Medication use in pregnancy: a cross-sectional, multinational web-based study, BMJ Open, vol.4, p.4365, 24534260.

D. Kim, Pharmacotherapy of postpartum depression: an update, Expert Opinion on Pharmacotherapy, vol.52, issue.3, pp.1223-1234, 24773410.
DOI : 10.1097/GRF.0b013e3181b52bd6

T. Oberlander, Sustained Neurobehavioral Effects of Exposure to SSRI Antidepressants During Development: Molecular to Clinical Evidence, Clinical Pharmacology & Therapeutics, vol.48, issue.6, pp.672-677, 2009.
DOI : 10.1038/sj.mp.4002007

J. Homberg, New perspectives on the neurodevelopmental effects of SSRIs, Trends in Pharmacological Sciences, vol.31, issue.2, pp.60-65, 2010.
DOI : 10.1016/j.tips.2009.11.003

M. Glover and S. Clinton, Of rodents and humans: A comparative review of the neurobehavioral effects of early life SSRI exposure in preclinical and clinical research, International Journal of Developmental Neuroscience, vol.51, pp.50-72, 2016.
DOI : 10.1016/j.ijdevneu.2016.04.008

M. Gemmel, Perinatal fluoxetine effects on social play, the HPA system, and hippocampal plasticity in pre-adolescent male and female rats: Interactions with pre-gestational maternal stress, Psychoneuroendocrinology, vol.84, pp.159-171
DOI : 10.1016/j.psyneuen.2017.07.480

URL : https://hal.archives-ouvertes.fr/hal-01579611

C. Clements, Prenatal antidepressant exposure is associated with risk for attention-deficit hyperactivity disorder but not autism spectrum disorder in a large health system, Molecular Psychiatry, vol.24, issue.6, pp.727-734, 25155880.
DOI : 10.1016/j.annepidem.2013.12.014

K. Man, Exposure to selective serotonin reuptake inhibitors during pregnancy and risk of autism spectrum disorder in children: A systematic review and meta-analysis of observational studies, Neuroscience & Biobehavioral Reviews, vol.49, pp.82-89
DOI : 10.1016/j.neubiorev.2014.11.020

T. Oberlander, Externalizing and Attentional Behaviors in Children of Depressed Mothers Treated With a Selective Serotonin Reuptake Inhibitor Antidepressant During Pregnancy, Archives of Pediatrics & Adolescent Medicine, vol.161, issue.1, pp.22-29, 2007.
DOI : 10.1001/archpedi.161.1.22

H. Brown, Association Between Serotonergic Antidepressant Use During Pregnancy and Autism Spectrum Disorder in Children, JAMA, vol.317, issue.15, pp.1544-1552, 2017.
DOI : 10.1001/jama.2017.3415

A. Mezzacappa, 2017 Risk for Autism Spectrum Disorders According to Period of Prenatal Antidepressant Exposure: A Systematic Review and Meta-analysis. JAMA Pediatr. https, 28418571.

A. Haim, Gestational stress induces persistent depressive-like behavior and structural modifications within the postpartum nucleus accumbens, European Journal of Neuroscience, vol.24, issue.12, pp.3766-377325359225
DOI : 10.1016/S0149-7634(99)00065-2

O. Mahony and S. , Gestational stress leads to depressive-like behavioural and immunological changes in the rat, Neuroimmunomodulation, vol.13, pp.82-88, 2006.

P. Gaspar, The developmental role of serotonin: news from mouse molecular genetics, Nature Reviews Neuroscience, vol.17, issue.12, pp.1002-1012, 2003.
DOI : 10.1038/ng1097-206

URL : https://hal.archives-ouvertes.fr/hal-01274960

E. Herlenius and H. Lagercrantz, Development of neurotransmitter systems during critical periods, Experimental Neurology, vol.190, issue.1, pp.8-21, 2004.
DOI : 10.1016/j.expneurol.2004.03.027

P. Whitaker-azmitia, Serotonin and brain development: role in human developmental diseases, Brain Research Bulletin, vol.56, issue.5, pp.479-485, 2001.
DOI : 10.1016/S0361-9230(01)00615-3

M. Ansorge, Inhibition of Serotonin But Not Norepinephrine Transport during Development Produces Delayed, Persistent Perturbations of Emotional Behaviors in Mice, Journal of Neuroscience, vol.28, issue.1, pp.199-207, 2008.
DOI : 10.1523/JNEUROSCI.3973-07.2008

M. Ansorge, Early-Life Blockade of the 5-HT Transporter Alters Emotional Behavior in Adult Mice, Science, vol.306, issue.5697, pp.879-881, 2004.
DOI : 10.1126/science.1101678

S. Fernandez, 2016 Constitutive and Acquired Serotonin Deficiency Alters Memory and Hippocampal Synaptic Plasticity, Neuropsychopharmacology, p.27461084
DOI : 10.1038/npp.2016.134

URL : http://europepmc.org/articles/pmc5399229?pdf=render

S. Kurzepa and J. Bojanek, The 5HT Level and MAO Activity in Rat Brain During Development, Neonatology, vol.8, issue.4, pp.216-2215865342, 1965.
DOI : 10.1159/000239955

P. Baker and W. Quay, 5-Hydroxytryptamine metabolism in early embryogenesis, and the development of brain and retinal tissues. A review, Brain Research, vol.12, issue.2, pp.273-2954897075, 1969.
DOI : 10.1016/0006-8993(69)90001-8

J. Kristensen, Distribution and excretion of fluoxetine and norfluoxetine in human milk, British Journal of Clinical Pharmacology, vol.53, issue.4, pp.521-527, 1999.
DOI : 10.1002/(SICI)1096-9926(199605)53:5<304::AID-TERA4>3.0.CO;2-0

URL : https://bpspubs.onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2125.1999.00040.x

M. Gemmel, 2017 Perinatal selective serotonin reuptake inhibitor medication (SSRI) effects on social behaviors, neurodevelopment and the epigenome, Neuroscience & Biobehavioral Reviews
DOI : 10.1016/j.neubiorev.2017.04.023

URL : https://hal-univ-rennes1.archives-ouvertes.fr/hal-01619303/file/Perinatal%20selective%20serotonin%20reuptake%20inhibitor%20medication_revised.pdf

, Pawluski JL 2012 Perinatal selective serotonin reuptake inhibitor exposure: impact on brain development and neural plasticity, Neuroendocrinology, vol.95, pp.39-4621893935

H. Ishiwata, Selective serotonin reuptake inhibitor treatment of early postnatal mice reverses their prenatal stress-induced brain dysfunction, Neuroscience, vol.133, issue.4, pp.893-901, 2005.
DOI : 10.1016/j.neuroscience.2005.03.048

M. Gemmel, under review Perinatal fluoxetine effects on social play, the HPA system, and hippocampal plasticity in pre-adolescent male and female rats: interactions with maternal stress

M. Gemmel, 2015 Developmental fluoxetine and prenatal stress effects on serotonin, dopamine, and synaptophysin density in the PFC and hippocampus of offspring at weaning. Dev Psychobiol

M. Nagano, Early intervention with fluoxetine reverses abnormalities in the serotonergic system and behavior of rats exposed prenatally to dexamethasone, Neuropharmacology, vol.63, issue.2, pp.292-300
DOI : 10.1016/j.neuropharm.2012.03.027

J. Olivier, 2013 The effects of maternal depression and maternal selective serotonin reuptake inhibitor exposure on offspring, Front Cell Neurosci, vol.7, p.73, 23734100.

T. Cabrera and G. Battaglia, Delayed decreases in brain 5-hydroxytryptamine2A/2C receptor density and function in male rat progeny following prenatal fluoxetine, J Pharmacol Exp Ther, vol.269, pp.637-645, 1994.

A. Sarkar, Postnatal Fluoxetine-Evoked Anxiety Is Prevented by Concomitant 5-HT2A/C Receptor Blockade and Mimicked by Postnatal 5-HT2A/C Receptor Stimulation, Biological Psychiatry, vol.76, issue.11, pp.858-868, 24315410.
DOI : 10.1016/j.biopsych.2013.11.005

Y. Huang, Pre-gestational stress reduces the ratio of 5-HIAA to 5-HT and the expression of 5-HT1A receptor and serotonin transporter in the brain of foetal rat, BMC Neuroscience, vol.13, issue.1, p.22, 2012.
DOI : 10.1016/j.brainresbull.2010.02.015

J. Haring, Hippocampal serotonin levels influence the expression of S100?? detected by immunocytochemistry, Brain Research, vol.631, issue.1, pp.119-123, 1993.
DOI : 10.1016/0006-8993(93)91195-X

P. Whitaker-azmitia, Stimulation of astroglial 5-HT1A receptors releases the serotonergic growth factor, protein S-100, and alters astroglial morphology, Brain Research, vol.528, issue.1, pp.155-158, 1990.
DOI : 10.1016/0006-8993(90)90210-3

J. Pawluski, Neonatal S100B Protein Levels After Prenatal Exposure to Selective Serotonin Reuptake Inhibitors, PEDIATRICS, vol.124, issue.4, pp.662-670, 2009.
DOI : 10.1542/peds.2009-0442

A. Bhattacharyya, S100 is present in developing chicken neurons and schwann cell and promotes motor neuron survivalin vivo, Journal of Neurobiology, vol.252, issue.4, pp.451-466
DOI : 10.1113/jphysiol.1978.sp012546

T. Gonzalez-martinez, S-100 proteins in the human peripheral nervous system, Microscopy Research and Technique, vol.138, issue.6, pp.633-638, 2003.
DOI : 10.1210/endo.138.12.5579

R. Selinfreund, Neurotrophic protein S100 beta stimulates glial cell proliferation., Proceedings of the National Academy of Sciences, vol.88, issue.9, pp.3554-3558, 1991.
DOI : 10.1073/pnas.88.9.3554

URL : http://www.pnas.org/content/88/9/3554.full.pdf

S. Brummelte, Antidepressant use during pregnancy and serotonin transporter genotype (SLC6A4) Affect newborn serum reelin levels, Developmental Psychobiology, vol.166, issue.11, pp.518-529, 2013.
DOI : 10.1176/appi.ajp.2008.08081170

S. Podrebarac, Antenatal exposure to antidepressants is associated with altered brain development in very preterm-born neonates, Neuroscience, vol.342, p.27890829, 2016.
DOI : 10.1016/j.neuroscience.2016.11.025

P. Eriksson, Neurogenesis in the adult human hippocampus, Nature Medicine, vol.383, issue.11, pp.1313-1317, 1998.
DOI : 10.1038/383624a0

J. Pawluski, Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging, Frontiers in Neuroendocrinology, vol.30, issue.3, pp.343-357, 2009.
DOI : 10.1016/j.yfrne.2009.03.007

C. Hammels, Differential susceptibility to chronic social defeat stress relates to the number of Dnmt3a-immunoreactive neurons in the hippocampal dentate gyrus, Psychoneuroendocrinology, vol.51, pp.547-556
DOI : 10.1016/j.psyneuen.2014.09.021

C. Dalla, Stressful experience has opposite effects on dendritic spines in the hippocampus of cycling versus masculinized females, Neuroscience Letters, vol.449, issue.1, pp.52-56, 2009.
DOI : 10.1016/j.neulet.2008.10.051

B. Leuner and E. Gould, Structural Plasticity and Hippocampal Function, Annual Review of Psychology, vol.61, issue.1, pp.111-140, 2010.
DOI : 10.1146/annurev.psych.093008.100359

URL : http://europepmc.org/articles/pmc3012424?pdf=render

R. Djavadian, Serotonin and neurogenesis in the hippocampal dentate gyrus of adult mammals, Acta Neurobiol Exp (Wars), vol.64, pp.189-200, 2004.

J. Altman, Are New Neurons Formed in the Brains of Adult Mammals?, Science, vol.135, issue.3509, pp.1127-1128, 1962.
DOI : 10.1126/science.135.3509.1127

J. Altman and G. Das, Postnatal Neurogenesis in the Guinea-pig, Nature, vol.4, issue.5093, pp.1098-1101, 1967.
DOI : 10.1002/aja.1000750203

F. Boulle, Epigenetic regulation of the BDNF gene: implications for psychiatric disorders, Molecular Psychiatry, vol.21, issue.6, pp.584-596
DOI : 10.1016/j.biopsych.2010.05.028

E. Castren and T. Rantamaki, The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity, Developmental Neurobiology, vol.8, issue.5, pp.289-297, 2010.
DOI : 10.1097/00124509-199809000-00004

N. Karpova, Long-lasting behavioural and molecular alterations induced by early postnatal fluoxetine exposure are restored by chronic fluoxetine treatment in adult mice, European Neuropsychopharmacology, vol.19, issue.2, pp.97-108, 2009.
DOI : 10.1016/j.euroneuro.2008.09.002

L. Toffoli, Maternal exposure to fluoxetine during gestation and lactation affects the DNA methylation programming of rat's offspring: Modulation by folic acid supplementation, Behavioural Brain Research, vol.265, pp.142-147, 24583191.
DOI : 10.1016/j.bbr.2014.02.031

R. Molteni, Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans, Neurobiology of Disease, vol.37, issue.3, pp.747-755, 2010.
DOI : 10.1016/j.nbd.2009.12.014

F. Boulle, Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring, Hormones and Behavior, vol.80, pp.47-57, 26844865.
DOI : 10.1016/j.yhbeh.2016.01.017

URL : https://hal.archives-ouvertes.fr/hal-01313750

F. Boulle, Prenatal stress and early-life exposure to fluoxetine have enduring effects on anxiety and hippocampal BDNF gene expression in adult male offspring, Developmental Psychobiology, vol.32, issue.6, pp.427-438, 26608001.
DOI : 10.1016/j.neubiorev.2008.03.002

URL : https://hal.archives-ouvertes.fr/hal-01305478

I. Rayen, Fluoxetine during Development Reverses the Effects of Prenatal Stress on Depressive-Like Behavior and Hippocampal Neurogenesis in Adolescence, PLoS ONE, vol.60, issue.9, 2011.
DOI : 10.1371/journal.pone.0024003.t002

I. Rayen, Developmental exposure to SSRIs, in addition to maternal stress, has long-term sex-dependent effects on hippocampal plasticity, Psychopharmacology, vol.3, issue.Suppl 1, pp.1231-124425304865
DOI : 10.1371/journal.pone.0002170

H. Lee, Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats, Molecular Psychiatry, vol.94, issue.6, pp.725-618, 2001.
DOI : 10.1073/pnas.94.19.10409

A. Gobinath, Maternal postpartum corticosterone and fluoxetine differentially affect adult male and female offspring on anxiety-like behavior, stress reactivity, and hippocampal neurogenesis, Neuropharmacology, vol.101, pp.165-178
DOI : 10.1016/j.neuropharm.2015.09.001

J. Umemori, Distinct effects of perinatal exposure to fluoxetine or methylmercury on parvalbumin and perineuronal nets, the markers of critical periods in brain development, International Journal of Developmental Neuroscience, vol.44, pp.55-64, 25997908.
DOI : 10.1016/j.ijdevneu.2015.05.006

M. Glover, Early-life exposure to the SSRI paroxetine exacerbates depression-like behavior in anxiety/depression-prone rats, Neuroscience, vol.284, pp.775-797
DOI : 10.1016/j.neuroscience.2014.10.044

L. Galea, Gonadal hormone modulation of hippocampal neurogenesis in the adult, Hippocampus, vol.98, issue.3, pp.225-23216411182, 2006.
DOI : 10.1007/978-1-4615-1161-8

N. Tabori, Ultrastructural evidence that androgen receptors are located at extranuclear sites in the rat hippocampal formation, Neuroscience, vol.130, issue.1, pp.151-163, 2005.
DOI : 10.1016/j.neuroscience.2004.08.048

N. Weiland, Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats, The Journal of Comparative Neurology, vol.61, issue.4, pp.603-612, 1997.
DOI : 10.1159/000126849

K. Dohler, Influence of Neurotransmitters on Sexual Differentiation of Brain Structure and Function, Experimental and Clinical Endocrinology & Diabetes, vol.98, issue.05, pp.99-109, 1991.
DOI : 10.1055/s-0029-1211106

B. Jarzab and K. Dohler, Serotoninergic Influences on Sexual Differentiation of the Rat Brain, Prog Brain Res, vol.61, pp.119-126, 1984.
DOI : 10.1016/S0079-6123(08)64431-3

C. Wilson, The effect of neonatal manipulation of hypothalamic serotonin levels on sexual activity in the adult rat, Pharmacology Biochemistry and Behavior, vol.24, issue.5, pp.1175-1183, 1986.
DOI : 10.1016/0091-3057(86)90167-X

I. Rayen, 2013 Developmental fluoxetine exposure and prenatal stress alter sexual differentiation of the brain and reproductive behavior in male rat offspring, Psychoneuroendocrinology

S. Maccari, The Consequences of Early-Life Adversity: Neurobiological, Behavioural and Epigenetic Adaptations, Journal of Neuroendocrinology, vol.16, issue.Suppl. 2, pp.707-723
DOI : 10.1017/S1461145713000102

C. Mirescu and E. Gould, Stress and adult neurogenesis, Hippocampus, vol.133, issue.3, pp.233-238, 2006.
DOI : 10.1097/00006842-197007000-00008

P. Lucassen, Prenatal stress reduces postnatal neurogenesis in rats selectively bred for high, but not low, anxiety: possible key role of placental 11??-hydroxysteroid dehydrogenase type 2, European Journal of Neuroscience, vol.226, issue.1, 2009.
DOI : 10.1016/j.tem.2004.09.007

, Eur J Neurosci, vol.29, pp.97-103

L. Laurent, Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase, Biochimie, vol.140, pp.159-16528751217, 2017.
DOI : 10.1016/j.biochi.2017.07.008

URL : https://hal.archives-ouvertes.fr/pasteur-01574603

C. Muller, Impact of Maternal Serotonin Transporter Genotype on Placental Serotonin Fetal Forebrain Serotonin, and Neurodevelopment. Neuropsychopharmacology, vol.42, pp.427-43627550733, 2017.

A. Bonnin and P. Levitt, Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain, Neuroscience, vol.197, pp.1-7, 2011.
DOI : 10.1016/j.neuroscience.2011.10.005

I. Rayen, Developmental fluoxetine exposure facilitates sexual behavior in female offspring, Psychopharmacology, vol.7, issue.1, pp.123-133
DOI : 10.1016/0091-3057(86)90167-X

URL : https://hal.archives-ouvertes.fr/hal-01122028

J. Pawluski, Developmental fluoxetine exposure differentially alters central and peripheral measures of the HPA system in adolescent male and female offspring, Neuroscience, vol.220, pp.131-141
DOI : 10.1016/j.neuroscience.2012.06.034

J. Pawluski, Prenatal SSRI exposure alters neonatal corticosteroid binding globulin, infant cortisol levels, and emerging HPA function, Psychoneuroendocrinology, vol.37, issue.7, pp.1019-1028, 22177580.
DOI : 10.1016/j.psyneuen.2011.11.011

L. Bodnar and K. Wisner, Nutrition and Depression: Implications for Improving Mental Health Among Childbearing-Aged Women, Biological Psychiatry, vol.58, issue.9, pp.679-685, 2005.
DOI : 10.1016/j.biopsych.2005.05.009

J. Swain, Abstract, Development and Psychopathology, vol.27, issue.02, pp.535-55328401845
DOI : 10.1093/cercor/bhn153

C. Angelotta and K. Wisner, Treating Depression during Pregnancy: Are We Asking the Right Questions?, Birth Defects Research, vol.114, issue.12, pp.879-887, 2017.
DOI : 10.1097/AOG.0b013e3181ba0632