P. Almond, Postnatal depression: a global public health perspective, Perspect Public Health, vol.129, pp.221-227, 2009.
DOI : 10.1177/1757913909343882

H. M. Burke, Depression and cortisol responses to psychological stress: a meta-analysis, Psychoneuroendocrinology, vol.30, pp.846-856, 2005.
DOI : 10.1016/j.psyneuen.2005.02.010

B. M. Leung and B. J. Kaplan, Perinatal depression: prevalence, risks, and the nutrition link-a review of the literature, J Am Diet Assoc, vol.109, pp.1566-1575, 2009.

J. Pawluski, The Neurobiology of Postpartum Anxiety and Depression, Trends in Neurosciences, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01452985

T. F. Oberlander and L. Zwaigenbaum, Disentangling Maternal Depression and Antidepressant Use During Pregnancy as Risks for Autism in Children, JAMA, vol.317, pp.1533-1534, 2017.
DOI : 10.1001/jama.2017.3414

T. F. Oberlander, Neonatal outcomes after prenatal exposure to selective serotonin reuptake inhibitor antidepressants and maternal depression using population-based linked health data, Arch Gen Psychiatry, vol.63, pp.898-906, 2006.

W. O. Cooper, Increasing use of antidepressants in pregnancy, Am J Obstet Gynecol, vol.196, pp.544-541, 2007.

S. Gentile, The safety of newer antidepressants in pregnancy and breastfeeding, Drug Saf, vol.28, pp.137-152, 2005.

R. M. Hayes, Maternal antidepressant use and adverse outcomes: a cohort study of 228,876 pregnancies, Am J Obstet Gynecol, vol.207, pp.49-90, 2012.
DOI : 10.1016/j.ajog.2012.04.028

URL : http://europepmc.org/articles/pmc3567615?pdf=render

R. A. Charlton, Selective serotonin reuptake inhibitor prescribing before, during and after pregnancy: a population-based study in six European regions, BJOG, vol.122, pp.1010-1020, 2015.
DOI : 10.1111/1471-0528.13143

URL : http://onlinelibrary.wiley.com/doi/10.1111/1471-0528.13143/pdf

H. Zoega, Use of SSRI and SNRI Antidepressants during Pregnancy: A Population-Based Study from Denmark, PLoS One, vol.10, 2015.
DOI : 10.1371/journal.pone.0144474

URL : https://doi.org/10.1371/journal.pone.0144474

A. Lupattelli, Medication use in pregnancy: a cross-sectional, multinational web-based study, BMJ Open, vol.4, 2014.
DOI : 10.1136/bmjopen-2013-004365

URL : http://bmjopen.bmj.com/content/bmjopen/4/2/e004365.full.pdf

D. R. Kim, Pharmacotherapy of postpartum depression: an update, Expert Opin Pharmacother, vol.15, pp.1223-1234, 2014.
DOI : 10.1517/14656566.2014.911842

URL : http://europepmc.org/articles/pmc4073803?pdf=render

T. F. Oberlander, Sustained neurobehavioral effects of exposure to SSRI antidepressants during development: molecular to clinical evidence, Clin Pharmacol Ther, vol.86, pp.672-677, 2009.
DOI : 10.1038/clpt.2009.201

URL : http://europepmc.org/articles/pmc3963518?pdf=render

J. R. Homberg, New perspectives on the neurodevelopmental effects of SSRIs, Trends Pharmacol Sci, vol.31, pp.60-65, 2010.

M. E. Glover and S. M. Clinton, Of rodents and humans: A comparative review of the neurobehavioral effects of early life SSRI exposure in preclinical and clinical research, Int J Dev Neurosci, vol.51, pp.50-72, 2016.

M. Gemmel, Perinatal fluoxetine effects on social play, the HPA system, and hippocampal plasticity in pre-adolescent male and female rats: Interactions with pre-gestational maternal stress, Psychoneuroendocrinology, vol.84, pp.159-171, 2017.
DOI : 10.1016/j.psyneuen.2017.07.480

URL : https://hal.archives-ouvertes.fr/hal-01579611

C. C. Clements, Prenatal antidepressant exposure is associated with risk for attention-deficit hyperactivity disorder but not autism spectrum disorder in a large health system, Mol Psychiatry, vol.20, pp.727-734, 2015.

K. K. Man, Exposure to selective serotonin reuptake inhibitors during pregnancy and risk of autism spectrum disorder in children: a systematic review and meta-analysis of observational studies, Neurosci Biobehav Rev, vol.49, pp.82-89, 2015.

T. F. Oberlander, Externalizing and attentional behaviors in children of depressed mothers treated with a selective serotonin reuptake inhibitor antidepressant during pregnancy, Arch Pediatr Adolesc Med, vol.161, pp.22-29, 2007.

H. K. Brown, Association Between Serotonergic Antidepressant Use During Pregnancy and Autism Spectrum Disorder in Children, JAMA, vol.317, pp.1544-1552, 2017.
DOI : 10.1001/jama.2017.3415

A. Mezzacappa, Risk for Autism Spectrum Disorders According to Period of Prenatal Antidepressant Exposure: A Systematic Review and Meta-analysis, JAMA Pediatr, 2017.

A. Haim, Gestational stress induces persistent depressive-like behavior and structural modifications within the postpartum nucleus accumbens, Eur J Neurosci, vol.40, pp.3766-3773, 2014.
DOI : 10.1111/ejn.12752

URL : http://europepmc.org/articles/pmc4488909?pdf=render

O. Sm, Gestational stress leads to depressive-like behavioural and immunological changes in the rat, Neuroimmunomodulation, vol.13, pp.82-88, 2006.

P. Gaspar, The developmental role of serotonin: news from mouse molecular genetics, Nat Rev Neurosci, vol.4, pp.1002-1012, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01274960

E. Herlenius and H. Lagercrantz, Development of neurotransmitter systems during critical periods, Exp Neurol, 0190.
DOI : 10.1016/j.expneurol.2004.03.027

P. M. Whitaker-azmitia, Serotonin and brain development: role in human developmental diseases, Brain Res Bull, vol.56, pp.479-485, 2001.
DOI : 10.1016/s0361-9230(01)00615-3

M. S. Ansorge, Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice, J Neurosci, vol.28, pp.199-207, 2008.

M. S. Ansorge, Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice, Science, vol.306, pp.879-881, 2004.

S. P. Fernandez, Constitutive and Acquired Serotonin Deficiency Alters Memory and Hippocampal Synaptic Plasticity. Neuropsychopharmacology, 2016.

S. Kurzepa and J. Bojanek, The 5HT level and MAO activity in rat brain during development, Biol Neonat, vol.8, pp.216-221, 1965.

P. C. Baker and W. B. Quay, 5-hydroxytryptamine metabolism in early embryogenesis, and the development of brain and retinal tissues. A review, Brain Res, vol.12, pp.273-295, 1969.

J. H. Kristensen, Distribution and excretion of fluoxetine and norfluoxetine in human milk, Br J Clin Pharmacol, vol.48, pp.521-527, 1999.

M. Gemmel, Perinatal selective serotonin reuptake inhibitor medication (SSRI) effects on social behaviors, neurodevelopment and the epigenome, Neuroscience & Biobehavioral Reviews, 2017.
DOI : 10.1016/j.neubiorev.2017.04.023

URL : https://hal.archives-ouvertes.fr/hal-01619303

J. L. Pawluski, Perinatal selective serotonin reuptake inhibitor exposure: impact on brain development and neural plasticity, Neuroendocrinology, vol.95, pp.39-46, 2012.
DOI : 10.1159/000329293

H. Ishiwata, Selective serotonin reuptake inhibitor treatment of early postnatal mice reverses their prenatal stress-induced brain dysfunction, Neuroscience, vol.133, pp.893-901, 2005.

M. Gemmel, under review Perinatal fluoxetine effects on social play, the HPA system, and hippocampal plasticity in pre-adolescent male and female rats: interactions with maternal stress

, Psychoneuroendocrinology

M. Gemmel, Developmental fluoxetine and prenatal stress effects on serotonin, dopamine, and synaptophysin density in the PFC and hippocampus of offspring at weaning, Dev Psychobiol, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01237091

M. Nagano, Early intervention with fluoxetine reverses abnormalities in the serotonergic system and behavior of rats exposed prenatally to dexamethasone, Neuropharmacology, vol.63, pp.292-300, 2012.

J. D. Olivier, The effects of maternal depression and maternal selective serotonin reuptake inhibitor exposure on offspring, Front Cell Neurosci, vol.7, 2013.

T. M. Cabrera and G. Battaglia, Delayed decreases in brain 5-hydroxytryptamine2A/2C receptor density and function in male rat progeny following prenatal fluoxetine, J Pharmacol Exp Ther, vol.269, pp.637-645, 1994.

A. Sarkar, Postnatal fluoxetine-evoked anxiety is prevented by concomitant 5-HT2A/C receptor blockade and mimicked by postnatal 5-HT2A/C receptor stimulation, Biol Psychiatry, vol.76, pp.858-868, 2014.
DOI : 10.1016/j.biopsych.2013.11.005

Y. Huang, Pre-gestational stress reduces the ratio of 5-HIAA to 5-HT and the expression of 5-HT1A receptor and serotonin transporter in the brain of foetal rat, BMC Neurosci, vol.13, p.22, 2012.

J. H. Haring, Hippocampal serotonin levels influence the expression of S100 beta detected by immunocytochemistry, Brain Res, vol.631, pp.119-123, 1993.

P. M. Whitaker-azmitia, Stimulation of astroglial 5-HT1A receptors releases the serotonergic growth factor, protein S-100, and alters astroglial morphology, Brain Res, vol.528, pp.155-158, 1990.

J. L. Pawluski, Neonatal S100B protein levels after prenatal exposure to selective serotonin reuptake inhibitors, Pediatrics, vol.124, pp.662-670, 2009.
DOI : 10.1542/peds.2009-0442

A. Bhattacharyya, S100 is present in developing chicken neurons and Schwann cells and promotes motor neuron survival in vivo, J Neurobiol, vol.23, pp.451-466, 1992.
DOI : 10.1002/neu.480230410

T. Gonzalez-martinez, S-100 proteins in the human peripheral nervous system, Microsc Res Tech, vol.60, pp.633-638, 2003.
DOI : 10.1002/jemt.10304

R. H. Selinfreund, Neurotrophic protein S100 beta stimulates glial cell proliferation, Proc Natl Acad Sci U S A, vol.88, pp.3554-3558, 1991.
DOI : 10.1073/pnas.88.9.3554

URL : http://www.pnas.org/content/88/9/3554.full.pdf

S. Brummelte, Antidepressant use during pregnancy and serotonin transporter genotype (SLC6A4) affect newborn serum reelin levels, Dev Psychobiol, vol.55, pp.518-529, 2013.
DOI : 10.1002/dev.21056

S. K. Podrebarac, Antenatal exposure to antidepressants is associated with altered brain development in very preterm-born neonates, 2016.
DOI : 10.1016/j.neuroscience.2016.11.025

P. S. Eriksson, Neurogenesis in the adult human hippocampus, Nat Med, vol.4, pp.1313-1317, 1998.

J. L. Pawluski, Effects of steroid hormones on neurogenesis in the hippocampus of the adult female rodent during the estrous cycle, pregnancy, lactation and aging, Front Neuroendocrinol, vol.30, pp.343-357, 2009.

C. Hammels, Differential susceptibility to chronic social defeat stress relates to the number of Dnmt3a-immunoreactive neurons in the hippocampal dentate gyrus, Psychoneuroendocrinology, vol.51, pp.547-556, 2015.

C. Dalla, Stressful experience has opposite effects on dendritic spines in the hippocampus of cycling versus masculinized females, Neurosci Lett, vol.449, pp.52-56, 2009.

B. Leuner and E. Gould, Structural plasticity and hippocampal function, Annu Rev Psychol, vol.61, pp.111-113, 2010.
DOI : 10.1146/annurev.psych.093008.100359

URL : http://europepmc.org/articles/pmc3012424?pdf=render

R. L. Djavadian, Serotonin and neurogenesis in the hippocampal dentate gyrus of adult mammals, Acta Neurobiol Exp (Wars), vol.64, pp.189-200, 2004.

J. Altman, Are new neurons formed in the brains of adult mammals, Science, vol.135, pp.1127-1128, 1962.

J. Altman and G. D. Das, Postnatal neurogenesis in the guinea-pig, Nature, vol.214, pp.1098-1101, 1967.

F. Boulle, Epigenetic regulation of the BDNF gene: implications for psychiatric disorders, Mol Psychiatry, vol.17, pp.584-596, 2012.

E. Castren and T. Rantamaki, The role of BDNF and its receptors in depression and antidepressant drug action: Reactivation of developmental plasticity, Dev Neurobiol, vol.70, pp.289-297, 2010.

N. N. Karpova, Long-lasting behavioural and molecular alterations induced by early postnatal fluoxetine exposure are restored by chronic fluoxetine treatment in adult mice, Eur Neuropsychopharmacol, vol.19, pp.97-108, 2009.
DOI : 10.1016/j.euroneuro.2008.09.002

L. V. Toffoli, Maternal exposure to fluoxetine during gestation and lactation affects the DNA methylation programming of rat's offspring: modulation by folic acid supplementation, Behav Brain Res, vol.265, pp.142-147, 2014.

R. Molteni, Reduced function of the serotonin transporter is associated with decreased expression of BDNF in rodents as well as in humans, Neurobiol Dis, vol.37, pp.747-755, 2010.

F. Boulle, Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring, Horm Behav, vol.80, pp.47-57, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01313750

F. Boulle, Prenatal stress and early-life exposure to fluoxetine have enduring effects on anxiety and hippocampal BDNF gene expression in adult male offspring, Dev Psychobiol, vol.58, pp.427-438, 2016.
DOI : 10.1002/dev.21385

URL : https://hal.archives-ouvertes.fr/hal-01305478

I. Rayen, Fluoxetine during development reverses the effects of prenatal stress on depressive-like behavior and hippocampal neurogenesis in adolescence, PLoS One, vol.6, p.24003, 2011.

I. Rayen, Developmental exposure to SSRIs, in addition to maternal stress, has long-term sex-dependent effects on hippocampal plasticity, Psychopharmacology (Berl), vol.232, pp.1231-1244, 2015.
DOI : 10.1007/s00213-014-3758-0

H. J. Lee, Fluoxetine enhances cell proliferation and prevents apoptosis in dentate gyrus of maternally separated rats, Mol Psychiatry, vol.6, pp.725-618, 2001.
DOI : 10.1038/sj.mp.4000947

URL : https://www.nature.com/articles/4000947.pdf

A. R. Gobinath, Maternal postpartum corticosterone and fluoxetine differentially affect adult male and female offspring on anxiety-like behavior, stress reactivity, and hippocampal neurogenesis, Neuropharmacology, vol.101, pp.165-178, 2016.
DOI : 10.1016/j.neuropharm.2015.09.001

J. Umemori, Distinct effects of perinatal exposure to fluoxetine or methylmercury on parvalbumin and perineuronal nets, the markers of critical periods in brain development, Int J Dev Neurosci, vol.44, pp.55-64, 2015.

M. E. Glover, Early-life exposure to the SSRI paroxetine exacerbates depression-like behavior in anxiety/depression-prone rats, Neuroscience, vol.284, pp.775-797, 2015.
DOI : 10.1016/j.neuroscience.2014.10.044

URL : http://europepmc.org/articles/pmc4267992?pdf=render

L. A. Galea, Gonadal hormone modulation of hippocampal neurogenesis in the adult, Hippocampus, vol.16, pp.225-232, 2006.

N. E. Tabori, Ultrastructural evidence that androgen receptors are located at extranuclear sites in the rat hippocampal formation, Neuroscience, vol.130, pp.151-163, 2005.
DOI : 10.1016/j.neuroscience.2004.08.048

N. G. Weiland, Distribution and hormone regulation of estrogen receptor immunoreactive cells in the hippocampus of male and female rats, J Comp Neurol, vol.388, pp.603-612, 1997.

K. D. Dohler, Influence of neurotransmitters on sexual differentiation of brain structure and function, Exp Clin Endocrinol, vol.98, pp.99-109, 1991.

B. Jarzab and K. D. Dohler, Serotoninergic influences on sexual differentiation of the rat brain, Prog Brain Res, vol.61, pp.119-126, 1984.

C. A. Wilson, The effect of neonatal manipulation of hypothalamic serotonin levels on sexual activity in the adult rat, Pharmacol Biochem Behav, vol.24, pp.1175-1183, 1986.

I. Rayen, Developmental fluoxetine exposure and prenatal stress alter sexual differentiation of the brain and reproductive behavior in male rat offspring, p.3399049, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01122065

S. Maccari, The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations, J Neuroendocrinol, vol.26, pp.707-723, 2014.

C. Mirescu and E. Gould, Stress and adult neurogenesis, Hippocampus, vol.16, pp.233-238, 2006.

P. J. Lucassen, Prenatal stress reduces postnatal neurogenesis in rats selectively bred for high, but not low, anxiety: possible key role of placental 11beta-hydroxysteroid dehydrogenase type 2, Eur J Neurosci, vol.29, pp.97-103, 2009.

L. Laurent, Human placenta expresses both peripheral and neuronal isoform of tryptophan hydroxylase, Biochimie, vol.140, pp.159-165, 2017.
DOI : 10.1016/j.biochi.2017.07.008

URL : https://hal.archives-ouvertes.fr/pasteur-01574603

C. L. Muller, Impact of Maternal Serotonin Transporter Genotype on Placental Serotonin, vol.42, pp.427-436, 2017.

A. Bonnin and P. Levitt, Fetal, maternal, and placental sources of serotonin and new implications for developmental programming of the brain, Neuroscience, vol.197, pp.1-7, 2011.

I. Rayen, Developmental fluoxetine exposure facilitates sexual behavior in female offspring, Psychopharmacology (Berl), vol.231, pp.123-133, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01122028

J. L. Pawluski, Developmental fluoxetine exposure differentially alters central and peripheral measures of the HPA system in adolescent male and female offspring, Neuroscience, vol.220, pp.131-141, 2012.

J. L. Pawluski, Prenatal SSRI exposure alters neonatal corticosteroid binding globulin, infant cortisol levels, and emerging HPA function, Psychoneuroendocrinology, vol.37, pp.1019-1028, 2012.

L. M. Bodnar and K. L. Wisner, Nutrition and depression: implications for improving mental health among childbearing-aged women, Biol Psychiatry, vol.58, pp.679-685, 2005.

J. E. Swain, Parent-child intervention decreases stress and increases maternal brain activity and connectivity during own baby-cry: An exploratory study, Dev Psychopathol, vol.29, pp.535-553, 2017.

C. Angelotta and K. L. Wisner, Treating Depression during Pregnancy: Are We Asking the Right Questions?, Birth Defects Res, vol.109, pp.879-887, 2017.