R. Alfaro-aco, A. Thawani, P. , and S. , Structural analysis of the role of TPX2 in branching microtubule nucleation, J. Cell Biol, vol.216, pp.983-997, 2017.

A. W. Bird, H. , and A. A. , Building a spindle of the correct length in human cells requires the interaction between TPX2 and Aurora A, J. Cell Biol, vol.182, pp.289-300, 2008.

D. D. Brown, I. B. Dawid, and R. H. Reeder, Xenopus borealis misidentified as Xenopus mulleri, Dev. Biol, vol.59, pp.266-267, 1977.
DOI : 10.1016/0012-1606(77)90263-9

D. D. Brown and K. Sugimoto, The structure and evolution of ribosomal and 5S DNAs in Xenopus laevis and Xenopus mulleri, Cold Spring Harb. Symp. Quant. Biol, vol.38, pp.501-505, 1974.

D. D. Brown, P. C. Wensink, J. , and E. , A comparison of the ribosomal DNA's of Xenopus laevis and Xenopus mulleri: the evolution of tandem genes, J. Mol. Biol, vol.63, pp.57-73, 1972.

K. S. Brown, M. D. Blower, T. J. Maresca, T. C. Grammer, R. M. Harland et al., Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle, 2007.
DOI : 10.1083/jcb.200610043

URL : http://jcb.rupress.org/content/jcb/176/6/765.full.pdf

, J. Cell Biol, vol.176, pp.765-770

T. Cavazza and I. Vernos, The RanGTP Pathway: From Nucleo-Cytoplasmic Transport to Spindle Assembly and Beyond. Front, Cell Dev. Biol, vol.3, 2016.

H. Chang, J. Wang, Y. Tian, J. Xu, X. Gou et al., The TPX2 gene is a promising diagnostic and therapeutic target for cervical cancer, Oncol. Rep, vol.27, pp.1353-1359, 2012.

M. E. Crowder, M. Strzelecka, J. D. Wilbur, M. C. Good, G. Von-dassow et al., A comparative analysis of spindle morphometrics across metazoans, Curr. Biol, vol.25, pp.1542-1550, 2015.

A. D. Edelstein, M. Tsuchida, N. Amodaj, H. Pinkard, R. D. Vale et al., Advanced methods of microscope control using µManager software, J. Biol. Methods, vol.1, p.10, 2014.
DOI : 10.14440/jbm.2014.36

URL : https://doi.org/10.14440/jbm.2014.36

P. J. Ford and R. D. Brown, Sequences of 5S ribosomal RNA from Xenopus mulleri and the evolution of 5S gene-coding sequences, Cell, vol.8, pp.485-493, 1976.

J. Fu, M. Bian, G. Xin, Z. Deng, J. Luo et al., , vol.20, p.38

, Cytoskeleton, vol.21

C. Zhang, TPX2 phosphorylation maintains metaphase spindle length by regulating microtubule flux, J. Cell Biol, vol.210, pp.373-383, 2015.

R. Gibeaux, Paternal chromosome loss and metabolic crisis contribute to hybrid inviability in Xenopus, Nature, vol.553, pp.337-341, 2018.
DOI : 10.1038/nature25188

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5988642

G. Goshima, Identification of a TPX2-like microtubule-associated protein in Drosophila, PLoS One, vol.6, 2011.

R. M. Grainger, Xenopus tropicalis as a Model Organism for Genetics and Genomics: Past, Present and Future, Methods Mol. Biol, pp.3-15, 2012.
DOI : 10.1007/978-1-61779-992-1_1

URL : http://europepmc.org/articles/pmc3918953?pdf=render

A. W. Grenfell, M. Strzelecka, M. E. Crowder, K. J. Helmke, A. L. Schlaitz et al., A versatile multivariate image analysis pipeline reveals features of Xenopus extract spindles, J. Cell Biol, vol.213, pp.127-136, 2016.

M. D. Griswold, R. D. Brown, and G. P. Valentini, An analysis of the degree of homology between 28S rRNA from Xenopus laevis and Xenopus mulleri, 1974.

, Biochem. Biophys. Res. Commun, vol.58, pp.1093-1103

D. Halpin, P. Kalab, J. Wang, K. Weis, and R. Heald, Mitotic spindle assembly around RCC1-coated beads in Xenopus egg extracts, PLoS Biol, vol.9, 2011.

E. Hannak and R. Heald, Investigating mitotic spindle assembly and function in vitro using Xenopus laevis egg extracts, Nat. Protoc, vol.1, pp.2305-2314, 2006.

D. Hayward, W. , and J. G. , Chromatin-mediated microtubule nucleation in Drosophila syncytial embryos, Commun. Integr. Biol, vol.7, 2014.

R. Heald, R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker et al., Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts, Nature, vol.382, pp.420-425, 1996.

K. J. Helmke and R. Heald, TPX2 levels modulate meiotic spindle size and architecture in Xenopus egg extracts, J. Cell Biol, vol.206, pp.385-393, 2014.

K. J. Helmke, R. Heald, W. , and J. D. , Interplay between spindle architecture and function, 2013.
DOI : 10.1016/b978-0-12-407694-5.00003-1

URL : https://cloudfront.escholarship.org/dist/prd/content/qt34h2p6gj/qt34h2p6gj.pdf?t=o0hv5w

K. Jiang, L. Rezabkova, S. Hua, Q. Liu, G. Capitani et al., Microtubule minus-end regulation at spindle poles by an ASPM-katanin complex, Nat. Cell Biol, vol.19, pp.480-492, 2017.

N. Joly, L. Martino, E. Gigant, J. Dumont, P. et al., Microtubule-severing, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01472361

P. Kalab, R. T. Pu, and M. Dasso, The Ran GTPase regulates mitotic spindle assembly, Curr. Biol, vol.9, pp.481-484, 1999.

P. Kalab, K. Weis, and R. Heald, Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts, Science, vol.295, pp.2452-2456, 2002.

C. Lee, E. Kieserman, R. S. Gray, T. J. Park, W. et al., Whole-Mount Fluorescence Immunocytochemistry on Xenopus Embryos, Cold Spring Harb. Protoc, vol.3, pp.1-5, 2008.
DOI : 10.1101/pdb.prot4957

D. E. Leister and I. B. Dawid, Mitochondrial ribosomal proteins in Xenopus laevis/X. mulleri interspecific hybrids, J. Mol. Biol, vol.96, pp.119-123, 1975.

D. L. Levy and R. Heald, Biological scaling problems and solutions in amphibians, Cold Spring Harb. Perspect. Biol, vol.8, 2016.

R. Loughlin, R. Heald, and F. Nédélec, A computational model predicts Xenopus meiotic spindle organization, J. Cell Biol, vol.191, pp.1239-1249, 2010.

R. Loughlin, J. D. Wilbur, F. J. Mcnally, F. J. Nédélec, and R. Heald, Katanin contributes to interspecies spindle length scaling in Xenopus, Cell, vol.147, pp.1397-1407, 2011.

N. Ma, J. Titus, A. Gable, J. L. Ross, W. et al., TPX2 regulates the localization and activity of Eg5 in the mammalian mitotic spindle, J. Cell Biol, vol.195, pp.87-98, 2011.

T. J. Maresca and R. Heald, Methods for studying spindle assembly and chromosome condensation in Xenopus egg extracts, Methods Mol. Biol, vol.322, pp.459-474, 2006.

Y. Masui and C. L. Markert, Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes, J. Exp. Zool, pp.129-146, 1971.

K. Mcnally, A. Audhya, K. Oegema, and F. J. Mcnally, Katanin controls mitotic and meiotic spindle length, J. Cell Biol, vol.175, pp.881-891, 2006.

G. Neumayer, C. Belzil, O. J. Gruss, and M. D. Nguyen, TPX2: Of spindle assembly, DNA damage response, and cancer. Cell. Mol. Life Sci, vol.71, pp.3027-3047, 2014.

P. D. Nieuwkoop and J. Faber, Normal table of Xenopus laevis (Daudin), vol.22, p.38, 1994.

C. Petry and S. , Mechanisms of Mitotic Spindle Assembly, Annu. Rev. Biochem, vol.85, pp.659-683, 2016.
DOI : 10.1146/annurev-biochem-060815-014528

URL : http://europepmc.org/articles/pmc5016079?pdf=render

S. Petry, A. C. Groen, K. Ishihara, T. J. Mitchison, V. et al., Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2, Cell, vol.152, pp.768-777, 2013.
DOI : 10.1016/j.cell.2012.12.044

URL : https://doi.org/10.1016/j.cell.2012.12.044

S. B. Reber, J. Baumgart, P. O. Widlund, A. Pozniakovsky, J. Howard et al., XMAP215 activity sets spindle length by controlling the total mass of spindle microtubules, Nat. Cell Biol, vol.15, pp.1116-1122, 2013.

E. M. De-robertis and P. Black, Hybrids of Xenopus laevis and Xenopus borealis express proteins from both parents, Dev. Biol, vol.68, pp.334-339, 1979.

K. E. Sawin and T. J. Mitchison, Mitotic Spindle Assembly by Two Different Pathways in Vitro, J. Cell Biol, vol.112, pp.925-940, 1991.
DOI : 10.1083/jcb.112.5.925

URL : http://jcb.rupress.org/content/jcb/112/5/925.full.pdf

J. Schindelin, Fiji: an open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.
DOI : 10.1038/nmeth.2019

URL : http://europepmc.org/articles/pmc3855844?pdf=render

J. Scrofani, T. Sardon, S. Meunier, and I. Vernos, Microtubule nucleation in mitosis by a RanGTP-dependent protein complex, Curr. Biol, vol.25, pp.131-140, 2015.
DOI : 10.1016/j.cub.2014.11.025

URL : https://doi.org/10.1016/j.cub.2014.11.025

A. M. Session, Genome evolution in the allotetraploid frog Xenopus laevis, Nature, vol.538, pp.336-343, 2016.
DOI : 10.1038/nature19840

URL : http://www.nature.com/nature/journal/v538/n7625/pdf/nature19840.pdf

P. K. Wellauer and R. H. Reeder, A comparison of the structural organization of amplified ribosomal DNA from Xenopus mulleri and Xenopus laevis, J. Mol. Biol, vol.94, pp.151-161, 1975.

M. Wühr, Y. Chen, S. Dumont, A. C. Groen, D. J. Needleman et al., Evidence for an Upper Limit to Mitotic Spindle Length, Curr. Biol, vol.18, pp.1256-1261, 2008.