A. Aguilera and T. García-muse, Causes of genome instability, Annu Rev Genet, vol.47, pp.1-32, 2013.

A. K. Ahuja, K. Jodkowska, F. Teloni, A. H. Bizard, R. Zellweger et al., A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells, Nat Commun, vol.7, p.10660, 2016.

A. Saada, A. Teixeira-silva, A. Iraqui, I. Costes, A. Hardy et al., Unprotected replication forks are converted into mitotic sister chromatid bridges, Mol Cell, vol.66, pp.398-410, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02331509

G. M. Alvino, D. Collingwood, J. M. Murphy, J. Delrow, B. J. Brewer et al., Replication in hydroxyurea: It's a matter of time, Mol Cell Biol, vol.27, pp.6396-6406, 2007.

J. Bähler, J. Q. Wu, M. S. Longtine, N. G. Shah, A. Mckenzie et al., Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe, Yeast, vol.14, pp.943-951, 1998.

F. E. Benson, P. Baumann, and S. C. West, Synergistic actions of Rad51 and Rad52 in recombination and DNA repair, Nature, vol.391, pp.401-404, 1998.

A. C. Bester, M. Roniger, Y. S. Oren, M. M. Im, D. Sarni et al., Nucleotide deficiency promotes genomic instability in early stages of cancer development, Cell, vol.145, pp.435-446, 2011.

E. J. Brown and D. Baltimore, ATR disruption leads to chromosomal fragmentation and early embryonic lethality, Genes Dev, vol.14, pp.397-402, 2000.

C. Chen, A. Rappailles, L. Duquenne, M. Huvet, G. Guilbaud et al., Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes, Genome Res, vol.20, pp.447-457, 2010.
URL : https://hal.archives-ouvertes.fr/ensl-00517756

D. Cornacchia, V. Dileep, J. Quivy, R. Foti, F. Tili et al., Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells, EMBO J, vol.31, pp.3678-3690, 2012.

D. M. Czajkowsky, J. Liu, J. L. Hamlin, and Z. Shao, DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI, J Mol Biol, vol.375, pp.12-19, 2008.

Y. Daigaku, A. Keszthelyi, C. A. Müller, I. Miyabe, T. Brooks et al., A global profile of replicative polymerase usage, Nat Struct Mol Biol, vol.22, pp.192-198, 2015.

D. Rienzi, S. C. Collingwood, D. Raghuraman, M. K. Brewer, and B. J. , Fragile genomic sites are associated with origins of replication, Genome Biol Evol, vol.1, pp.350-363, 2009.

D. S. Dimitrova and D. M. Gilbert, Temporally coordinated assembly and disassembly of replication factories in the absence of DNA synthesis, Nat Cell Biol, vol.2, pp.686-694, 2000.

N. Donley and M. J. Thayer, DNA replication timing, genome stability and cancer: Late and/or delayed DNA replication timing is associated with increased genomic instability, Semin Cancer Biol, vol.23, pp.80-89, 2013.

J. K. Eykelenboom, E. C. Harte, L. Canavan, A. Pastor-peidro, I. Calvo-asensio et al., ATR activates the S-M checkpoint during unperturbed growth to ensure sufficient replication prior to mitotic onset, Cell Rep, vol.5, pp.1095-1107, 2013.

W. Feng, D. Collingwood, M. E. Boeck, L. A. Fox, G. M. Alvino et al., Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication, Nat Cell Biol, vol.8, pp.148-155, 2006.

W. Feng, D. Rienzi, S. C. Raghuraman, M. K. Brewer, and B. J. , Replication stressinduced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation, G3 (Bethesda), vol.1, pp.327-335, 2011.

S. L. Forsburg and N. Rhind, Basic methods for fission yeast, Yeast, vol.23, pp.173-183, 2006.

R. Foti, S. Gnan, D. Cornacchia, V. Dileep, A. Bulut-karslioglu et al., Nuclear architecture organized by Rif1 underpins the replication-timing program, Mol Cell, vol.61, pp.260-273, 2016.

M. Fragkos, O. Ganier, P. Coulombe, and M. Méchali, DNA replication origin activation in space and time, Nat Rev Mol Cell Biol, vol.16, pp.360-374, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01159618

X. Q. Ge and J. J. Blow, Chk1 inhibits replication factory activation but allows dormant origin firing in existing factories, J Cell Biol, vol.191, pp.1285-1297, 2010.

J. L. Gordon, K. P. Byrne, and K. H. Wolfe, Additions, losses, and rearrangements on the evolutionary route from a reconstructed ancestor to the modern Saccharomyces cerevisiae genome, PLoS Genet, vol.5, p.1000485, 2009.

J. Gregan, K. Lindner, L. Brimage, R. Franklin, M. Namdar et al., Fission yeast Cdc23/Mcm10 functions after pre-replicative complex formation to promote Cdc45 chromatin binding, Mol Biol Cell, vol.14, pp.3876-3887, 2003.

E. Guarino, I. Salguero, and S. E. Kearsey, Cellular regulation of ribonucleotide reductase in eukaryotes, Semin Cell Dev Biol, vol.30, pp.97-103, 2014.

T. D. Halazonetis, V. G. Gorgoulis, and J. Bartek, An oncogene-induced DNA damage model for cancer development, Science, vol.319, pp.1352-1355, 2008.

M. Hayano, Y. Kanoh, S. Matsumoto, R. , C. Shirahige et al., Rif1 is a global regulator of timing of replication origin firing in fission yeast, Genes Dev, vol.26, pp.137-150, 2012.

M. Hayashi, Y. Katou, T. Itoh, A. Tazumi, M. Tazumi et al., Genome-wide localization of pre-RC sites and identification of replication origins in fission yeast, EMBO J, vol.26, pp.1327-1339, 2007.

J. Hayles and P. Nurse, Genetics of the fission yeast Schizosaccharomyces pombe, Annu Rev Genet, vol.26, pp.373-402, 1992.

C. Heichinger, C. J. Penkett, J. Bähler, and P. Nurse, Genome-wide characterization of fission yeast DNA replication origins, EMBO J, vol.25, pp.5171-5179, 2006.

Y. Hiraoka, T. Toda, and M. Yanagida, The NDA3 gene of fission yeast encodes ?-tubulin: A cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis, Cell, vol.39, pp.349-358, 1984.

I. Hiratani, T. Ryba, M. Itoh, T. Yokochi, M. Schwaiger et al., Global reorganization of replication domains during embryonic stem cell differentiation, PLoS Biol, vol.6, p.245, 2008.

I. Hiratani, T. Ryba, M. Itoh, J. Rathjen, M. Kulik et al., Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis, Genome Res, vol.20, pp.155-169, 2010.

C. S. Hoffman and F. Winston, A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli, Gene, vol.57, pp.267-272, 1987.

E. A. Hoffman, A. Mcculley, B. Haarer, R. Arnak, and W. Feng, Break-seq reveals hydroxyurea-induced chromosome fragility as a result of unscheduled conflict between DNA replication and transcription, Genome Res, vol.25, pp.402-412, 2015.

N. Karnani and A. Dutta, The effect of the intra-S-phase checkpoint on origins of replication in human cells, Genes Dev, vol.25, pp.621-633, 2011.

A. Kaykov and P. Nurse, The spatial and temporal organization of origin firing during the S-phase of fission yeast, Genome Res, vol.25, pp.391-401, 2015.

A. Koren, P. Polak, J. Nemesh, J. J. Michaelson, J. Sebat et al., Differential relationship of DNA replication timing to different forms of human mutation and variation, Am J Hum Genet, vol.91, pp.1033-1040, 2012.

K. Labib, D. Piccoli, and G. , Surviving chromosome replication: the many roles of the S-phase checkpoint pathway, Philos Trans R Soc B Biol Sci, vol.366, pp.3554-3561, 2011.

M. H. Lam, Q. Liu, S. J. Elledge, and J. M. Rosen, Chk1 is haploinsufficient for multiple functions critical to tumor suppression, Cancer Cell, vol.6, pp.45-59, 2004.

S. Lambert, K. Mizuno, J. Blaisonneau, S. Martineau, R. Chanet et al., Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange, Mol Cell, vol.39, pp.346-359, 2010.

G. I. Lang and A. W. Murray, Mutation rates across budding yeast chromosome VI are correlated with replication timing, Genome Biol Evol, vol.3, pp.799-811, 2011.

M. Lisby, R. Rothstein, and U. H. Mortensen, Rad52 forms DNA repair and recombination centers during S phase, Proc Natl Acad Sci, vol.98, pp.8276-8282, 2001.

L. Liu, S. De, and F. Michor, DNA replication timing and higher-order nuclear organization determine single-nucleotide substitution patterns in cancer genomes, Nat Commun, vol.4, p.1502, 2013.

J. Lopez-mosqueda, N. L. Maas, Z. O. Jonsson, L. G. Defazio-eli, J. Wohlschlegel et al., Damage-induced phosphorylation of Sld3 is important to block late origin firing, Nature, vol.467, pp.479-483, 2010.

D. Mantiero, A. Mackenzie, A. Donaldson, and P. Zegerman, Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast, EMBO J, vol.30, pp.4805-4814, 2011.

H. J. Mccune, L. S. Danielson, G. M. Alvino, D. Collingwood, J. J. Delrow et al., The temporal program of chromosome replication: genomewide replication in clb5? Saccharomyces cerevisiae, Genetics, vol.180, pp.1833-1847, 2008.

K. L. Mickle, S. Ramanathan, A. Rosebrock, A. Oliva, A. Chaudari et al., Checkpoint independence of most DNA replication origins in fission yeast, BMC Mol Biol, vol.8, p.112, 2007.

S. Moreno, A. Klar, and P. Nurse, Molecular genetic analysis of fission yeast Schizosaccharomyces pombe, Methods Enzymol, vol.194, pp.795-823, 1991.

C. A. Muller and C. A. Nieduszynski, Conservation of replication timing reveals global and local regulation of replication origin activity, Genome Res, vol.22, pp.1953-1962, 2012.

P. K. Patel, B. Arcangioli, S. P. Baker, A. Bensimon, and N. Rhind, DNA replication origins fire stochastically in fission yeast, Mol Biol Cell, vol.17, pp.308-316, 2006.

J. Poli, O. Tsaponina, L. Crabbé, A. Keszthelyi, V. Pantesco et al., dNTP pools determine fork progression and origin usage under replication stress, EMBO J, vol.31, pp.883-894, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00677221

N. Rhind and D. M. Gilbert, DNA replication timing, Cold Spring Harb Perspect Biol, vol.5, p.10132, 2013.

J. C. Rivera-mulia and D. M. Gilbert, Replicating large genomes: divide and conquer, Mol Cell, vol.62, pp.756-765, 2016.

J. C. Rivera-mulia, Q. Buckley, T. Sasaki, J. Zimmerman, R. A. Didier et al., Dynamic changes in replication timing and gene expression during lineage specification of human pluripotent stem cells, Genome Res, vol.25, pp.1091-1103, 2015.

R. Team, . Rstudio, . Inc, and M. A. Boston, RStudio: integrated development for, 2015.

T. Ryba, I. Hiratani, J. Lu, M. Itoh, M. Kulik et al., Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types, Genome Res, vol.20, pp.761-770, 2010.

C. Santocanale and J. F. Diffley, A Mec1-and Rad53-dependent checkpoint controls late-firing origins of DNA replication, Nature, vol.395, pp.615-618, 1998.

D. Shechter, V. Costanzo, and J. Gautier, ATR and ATM regulate the timing of DNA replication origin firing, Nat Cell Biol, vol.6, pp.648-655, 2004.

K. Shirahige, Y. Hori, K. Shiraishi, M. Yamashita, K. Takahashi et al., Regulation of DNA-replication origins during cell-cycle progression, Nature, vol.395, pp.618-621, 1998.

J. A. Stamatoyannopoulos, I. Adzhubei, R. E. Thurman, G. V. Kryukov, S. M. Mirkin et al., Human mutation rate associated with DNA replication timing, Nat Genet, vol.41, pp.393-395, 2009.

R. G. Syljuåsen, C. S. Sørensen, L. T. Hansen, K. Fugger, C. Lundin et al., Inhibition of human Chk1 causes increased initiation of DNA replication, phosphorylation of ATR targets, and DNA breakage, Mol Cell Biol, vol.25, pp.3553-3562, 2005.

L. S. Symington, Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair, Microbiol Mol Biol Rev, vol.66, pp.630-670, 2002.

T. Tanaka, T. Umemori, S. Endo, S. Muramatsu, M. Kanemaki et al., Sld7, an Sld3-associated protein required for efficient chromosomal DNA replication in budding yeast, EMBO J, vol.30, pp.2019-2030, 2011.

L. Taricani and T. Wang, Rad4 TopBP1 , a scaffold protein, plays separate roles in DNA damage and replication checkpoints and DNA replication, Mol Biol Cell, vol.17, pp.3456-3468, 2006.

L. I. Toledo, M. Altmeyer, M. Rask, C. Lukas, D. H. Larsen et al., ATR prohibits replication catastrophe by preventing global exhaustion of RPA, Cell, vol.155, pp.1088-1103, 2013.

H. Van-bakel, F. J. Van-werven, M. Radonjic, M. O. Brok, D. Van-leenen et al., Improved genome-wide localization by ChIP-chip using double-round T7 RNA polymerase-based amplification, Nucleic Acids Res, vol.36, p.21, 2008.

E. Van-dyck, A. Z. Stasiak, A. Stasiak, and S. C. West, Binding of double-strand breaks in DNA by human Rad52 protein, Nature, vol.398, pp.728-731, 1999.

M. S. Wold, Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism, Annu Rev Biochem, vol.66, pp.61-92, 1997.

P. Wu and P. Nurse, Establishing the program of origin firing during S phase in fission yeast, Cell, vol.136, pp.852-864, 2009.

P. Wu and P. Nurse, Replication origin selection regulates the distribution of meiotic recombination, Mol Cell, vol.53, pp.655-662, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010761

S. Yamazaki, A. Ishii, Y. Kanoh, M. Oda, Y. Nishito et al., Rif1 regulates the replication timing domains on the human genome, EMBO J, vol.31, pp.3667-3677, 2012.

P. Zegerman and J. Diffley, Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation, Nature, vol.467, pp.474-478, 2010.

M. K. Zeman and K. A. Cimprich, Causes and consequences of replication stress, Nat Cell Biol, vol.16, pp.2-9, 2014.

Z. Zhou, M. Zhang, X. Peng, Y. Takayama, X. Xu et al., Mapping genomic hotspots of DNA damage by a single-strandDNA-compatible and strand-specific ChIP-seq method, Genome Res, vol.23, pp.705-715, 2013.