L. N. Van-der-vorm and B. H. Paw, Studying disorders of vertebrate iron and heme metabolism using zebrafish, Methods Cell Biol, vol.138, pp.193-220, 2017.

D. J. Lane, A. M. Merlot, M. L. Huang, D. Bae, P. J. Jansson et al.,

D. R. Kalinowski and . Richardson, Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease, Biochim. Biophys. Acta BBA-Mol. Cell Res, vol.1853, pp.1130-1144, 2015.

P. Brissot and O. Loréal, Iron metabolism and related genetic diseases: A cleared land, keeping mysteries, J. Hepatol, vol.64, pp.505-515, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01231421

D. F. Wallace, The Regulation of Iron Absorption and Homeostasis, Clin. Biochem. Rev, vol.37, pp.51-62, 2016.

M. Shayeghi, G. O. Latunde-dada, J. S. Oakhill, A. H. Laftah, K. Takeuchi et al.,

A. Khan, F. E. Warley, R. C. Mccann, D. M. Hider, G. J. Frazer et al.,

A. T. Simpson and . Mckie, Identification of an Intestinal Heme Transporter, Cell, vol.122, pp.789-801, 2005.

P. Aisen, A. Leibman, and J. Zweier, Stoichiometric and site characteristics of the binding of iron to human transferrin, J. Biol. Chem, vol.253, pp.1930-1937, 1978.

R. D. Klausner, G. Ashwell, J. Van-renswoude, J. B. Harford, and K. R. Bridges, Binding of apotransferrin to K562 cells: explanation of the transferrin cycle, Proc. Natl. Acad. Sci. U. S. A, vol.80, pp.2263-2266, 1983.

H. A. Huebers and C. A. Finch, The physiology of transferrin and transferrin receptors, Physiol. Rev, vol.67, pp.520-582, 1987.

G. Rishi, E. S. Secondes, D. F. Wallace, and V. N. Subramaniam, Hematopoietic deletion of transferrin receptor 2 in mice leads to a block in erythroid differentiation during irondeficient anemia, Am. J. Hematol, vol.91, pp.812-818, 2016.

R. S. Ohgami, D. R. Campagna, E. L. Greer, B. Antiochos, A. Mcdonald et al., Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells, Nat. Genet, vol.37, pp.1264-1269, 2005.

H. Gunshin, B. Mackenzie, U. V. Berger, Y. Gunshin, M. F. Romero et al., Cloning and characterization of a mammalian protoncoupled metal-ion transporter, Nature, vol.388, pp.482-488, 1997.

M. Troadec, O. Loréal, and P. Brissot, The interaction of iron and the genome: For better and for worse, Mutat. Res. Mutat. Res, vol.774, pp.25-32, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01616421

A. Donovan, A. Brownlie, Y. Zhou, J. Shepard, S. J. Pratt et al.,

B. Drejer, A. Barut, T. C. Zapata, C. Law, S. E. Brugnara et al.,

J. Kingsley, M. D. Palis, N. C. Fleming, L. I. Andrews, and . Zon, Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter, Nature, vol.403, pp.776-781, 2000.

C. K. Mukhopadhyay, Z. K. Attieh, and P. L. Fox, Role of ceruloplasmin in cellular iron uptake, Science, vol.279, pp.714-717, 1998.

C. Pigeon, G. Ilyin, B. Courselaud, P. Leroyer, B. Turlin et al., A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload, J. Biol. Chem, vol.276, pp.7811-7819, 2001.

C. H. Park, E. V. Valore, A. J. Waring, and T. Ganz, Hepcidin, a urinary antimicrobial peptide synthesized in the liver, J. Biol. Chem, vol.276, pp.7806-7810, 2001.

G. Nicolas, M. Bennoun, I. Devaux, C. Beaumont, B. Grandchamp et al., Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.8780-8785, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00331349

V. Sangkhae and E. Nemeth, Regulation of the Iron Homeostatic Hormone Hepcidin, Adv. Nutr. Bethesda Md, vol.8, pp.126-136, 2017.

N. Zhao, A. Zhang, and C. A. Enns, Iron regulation by hepcidin, J. Clin. Invest, vol.123, pp.2337-2343, 2013.

M. Wahedi, A. M. Wortham, M. D. Kleven, N. Zhao, S. Jue et al., Matriptase-2 suppresses hepcidin expression by cleaving multiple components of the hepcidin induction pathway, J. Biol. Chem, vol.292, pp.18354-18371, 2017.

A. Lawen and D. J. Lane, Mammalian Iron Homeostasis in Health and Disease: Uptake, Storage, Transport, and Molecular Mechanisms of Action, Antioxid. Redox Signal, vol.18, pp.2473-2507, 2012.

J. G. Quigley, Z. Yang, M. T. Worthington, J. D. Phillips, K. M. Sabo et al.,

S. Berg, B. L. Sassa, J. L. Wood, and . Abkowitz, Identification of a human heme exporter that is essential for erythropoiesis, Cell, vol.118, pp.757-766, 2004.

S. B. Keel, R. T. Doty, Z. Yang, J. G. Quigley, J. Chen et al., A heme export protein is required for red blood cell differentiation and iron homeostasis, Science, vol.319, pp.825-828, 2008.

J. Chen, Regulation of protein synthesis by the heme-regulated eIF2? kinase: relevance to anemias, Blood, vol.109, pp.2693-2699, 2007.

K. Furuyama, K. Kaneko, and P. D. Vargas, Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis

. Med, , vol.213, pp.1-16, 2007.

D. R. Richardson, D. J. Lane, E. M. Becker, M. L. Huang, M. Whitnall et al., Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol, Proc. Natl. Acad. Sci, vol.107, pp.10775-10782, 2010.

I. J. Schultz, C. Chen, B. H. Paw, and I. Hamza, Iron and Porphyrin Trafficking in Heme Biogenesis, J. Biol. Chem, vol.285, pp.26753-26759, 2010.

B. T. Paul, D. H. Manz, F. M. Torti, and S. V. Torti, Mitochondria and Iron: current questions, Expert Rev. Hematol, vol.10, pp.65-79, 2017.

T. B. Bartnikas, D. R. Campagna, B. Antiochos, H. Mulhern, C. Pondarré et al., Characterization of mitochondrial ferritin-deficient mice, Am. J. Hematol, vol.85, pp.958-960, 2010.

G. C. Shaw, J. J. Cope, L. Li, K. Corson, C. Hersey et al.,

R. A. Lambert, D. Wingert, N. S. Traver, B. A. Trede, Y. Barut et al., Mitoferrin is essential for erythroid iron assimilation, Nature, vol.440, pp.96-100, 2006.

M. Troadec, D. Warner, J. Wallace, K. Thomas, G. J. Spangrude et al., Targeted deletion of the mouse Mitoferrin1 gene: from anemia to protoporphyria, Blood, vol.117, pp.5494-5502, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01120681

W. Chen, P. N. Paradkar, L. Li, E. L. Pierce, N. B. Langer et al., Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.16263-16268, 2009.

M. Bayeva, A. Khechaduri, R. Wu, M. A. Burke, J. A. Wasserstrom et al., ATP-binding cassette B10 regulates early steps of heme synthesis, Circ. Res, vol.113, pp.279-287, 2013.
DOI : 10.1161/circresaha.113.301552

URL : http://circres.ahajournals.org/content/circresaha/113/3/279.full.pdf

P. C. Krishnamurthy, G. Du, Y. Fukuda, D. Sun, J. Sampath et al., Identification of a mammalian mitochondrial porphyrin transporter, Nature, vol.443, pp.586-589, 2006.
DOI : 10.1038/nature05125

D. L. Ulrich, J. Lynch, Y. Wang, Y. Fukuda, D. Nachagari et al., ATP-dependent mitochondrial porphyrin importer ABCB6 protects against phenylhydrazine toxicity, J. Biol. Chem, vol.287, pp.12679-12690, 2012.
DOI : 10.1074/jbc.m111.336180

URL : http://www.jbc.org/content/287/16/12679.full.pdf

K. Kiss, A. Brozik, N. Kucsma, A. Toth, M. Gera et al., Shifting the paradigm: the putative mitochondrial protein ABCB6 resides in the lysosomes of cells and in the plasma membrane of erythrocytes, PloS One, vol.7, p.37378, 2012.

D. Chiabrando, S. Marro, S. Mercurio, C. Giorgi, S. Petrillo et al., The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation, J. Clin. Invest, vol.122, pp.4569-4579, 2012.
DOI : 10.1172/jci62422

URL : http://www.jci.org/articles/view/62422/files/pdf

D. P. Barupala, S. P. Dzul, P. J. Riggs-gelasco, and T. L. Stemmler, Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors, Arch. Biochem. Biophys, vol.592, pp.60-75, 2016.
DOI : 10.1016/j.abb.2016.01.010

URL : http://europepmc.org/articles/pmc4784227?pdf=render

O. Stehling, C. Wilbrecht, and R. Lill, Mitochondrial iron-sulfur protein biogenesis and human disease, Biochimie, vol.100, pp.61-77, 2014.
DOI : 10.1016/j.biochi.2014.01.010

R. Lill, R. Dutkiewicz, S. A. Freibert, T. Heidenreich, J. Mascarenhas et al.,

A. J. Paul, N. Pierik, M. Richter, V. Stümpfig, O. Srinivasan et al., The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear ironsulfur proteins, Eur. J. Cell Biol, vol.94, pp.280-291, 2015.

R. Lill, B. Hoffmann, S. Molik, A. J. Pierik, N. Rietzschel et al., The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism, Biochim. Biophys. Acta, vol.1823, pp.1491-1508, 2012.

Y. Shimada, S. Okuno, A. Kawai, H. Shinomiya, A. Saito et al., Cloning and chromosomal mapping of a novel ABC transporter gene (hABC7), a candidate for X-linked sideroblastic anemia with spinocerebellar ataxia, J. Hum. Genet, vol.43, pp.115-122, 1998.

C. Pondarré, B. B. Antiochos, D. R. Campagna, S. L. Clarke, E. L. Greer et al., The mitochondrial ATP-binding cassette transporter Abcb7 is essential in mice and participates in cytosolic iron-sulfur cluster biogenesis, Hum. Mol. Genet, vol.15, pp.953-964, 2006.

S. Bekri, G. Kispal, H. Lange, E. Fitzsimons, J. Tolmie et al., Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation, Blood, vol.96, pp.3256-3264, 2000.

D. G. Bernard, Y. Cheng, Y. Zhao, and J. Balk, An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis, Plant Physiol, vol.151, pp.590-602, 2009.

C. Pondarre, D. R. Campagna, B. Antiochos, L. Sikorski, H. Mulhern et al., Abcb7, the gene responsible for X-linked sideroblastic anemia with ataxia, is essential for hematopoiesis, Blood, vol.109, pp.3567-3569, 2007.

C. P. Anderson, M. Shen, R. S. Eisenstein, and E. A. Leibold, Mammalian iron metabolism and its control by iron regulatory proteins, Biochim. Biophys. Acta, vol.1823, pp.1468-1483, 2012.

D. Zhang, M. C. Ghosh, and T. A. Rouault, The physiological functions of iron regulatory proteins in iron homeostasis-an update, Front. Pharmacol, vol.5, p.124, 2014.

C. Camaschella, Recent advances in the understanding of inherited sideroblastic anaemia, Br. J. Haematol, vol.143, pp.27-38, 2008.

A. Iolascon, L. De-falco, and C. Beaumont, Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis, Haematologica, vol.94, pp.395-408, 2009.

R. A. Wingert, J. L. Galloway, B. Barut, H. Foott, P. Fraenkel et al.,

A. J. Dooley, B. Davidson, B. Schmid, B. H. Schmidt, G. C. Paw et al., Screen Consortium, Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis, Nature, vol.436, pp.1035-1039, 2000.

C. Camaschella, A. Campanella, L. De-falco, L. Boschetto, R. Merlini et al., The human counterpart of zebrafish shiraz shows sideroblastic-like microcytic anemia and iron overload, Blood, vol.110, pp.1353-1358, 2007.
DOI : 10.1182/blood-2007-02-072520

URL : http://www.bloodjournal.org/content/bloodjournal/110/4/1353.full.pdf

H. Ye, S. Y. Jeong, M. C. Ghosh, G. Kovtunovych, L. Silvestri et al., Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts, J. Clin. Invest, vol.120, pp.1749-1761, 2010.
DOI : 10.1172/jci40372

URL : http://www.jci.org/articles/view/40372/files/pdf

P. Cavadini, G. Biasiotto, M. Poli, S. Levi, R. Verardi et al., RNA silencing of the mitochondrial ABCB7 transporter in HeLa cells causes an iron-deficient phenotype with mitochondrial iron overload, Blood, vol.109, pp.3552-3559, 2007.

M. P. Mims, Y. Guan, D. Pospisilova, M. Priwitzerova, K. Indrak et al., Identification of a human mutation of DMT1 in a patient with microcytic anemia and iron overload, Blood, vol.105, pp.1337-1342, 2005.

E. Bardou-jacquet, M. Island, A. Jouanolle, L. Détivaud, N. Fatih et al., A novel N491S mutation in the human SLC11A2 gene impairs protein trafficking and in association with the G212V mutation leads to microcytic anemia and liver iron overload, Blood Cells. Mol. Dis, vol.47, pp.243-248, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00739367

A. Iolascon, C. Camaschella, D. Pospisilova, C. Piscopo, G. Tchernia et al., Natural history of recessive inheritance of DMT1 mutations, J. Pediatr, vol.152, pp.136-139, 2008.
DOI : 10.1016/j.jpeds.2007.08.041

C. M. Craven, J. Alexander, M. Eldridge, J. P. Kushner, S. Bernstein et al., Tissue distribution and clearance kinetics of non-transferrin-bound iron in the hypotransferrinemic mouse: a rodent model for hemochromatosis, Proc. Natl. Acad. Sci. U. S. A, vol.84, pp.3457-3461, 1987.

P. Brissot, M. Ropert, C. Le-lan, and O. Loréal, Non-transferrin bound iron: a key role in iron overload and iron toxicity, Biochim. Biophys. Acta, vol.1820, pp.403-410, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00739430

P. Trombini, T. Coliva, E. Nemeth, R. Mariani, T. Ganz et al., Effects of plasma transfusion on hepcidin production in human congenital hypotransferrinemia, Haematologica, vol.92, pp.1407-1410, 2007.
DOI : 10.3324/haematol.11377

URL : http://www.haematologica.org/content/haematol/92/10/1407.full.pdf

D. Aslan, K. Crain, and E. Beutler, A new case of human atransferrinemia with a previously undescribed mutation in the transferrin gene, Acta Haematol, vol.118, pp.244-247, 2007.

B. S. Shamsian, N. Rezaei, M. T. Arzanian, S. Alavi, O. Khojasteh et al., Severe hypochromic microcytic anemia in a patient with congenital atransferrinemia, Pediatr. Hematol. Oncol, vol.26, pp.356-362, 2009.
DOI : 10.1080/08880010902973251

B. Grandchamp, G. Hetet, C. Kannengiesser, C. Oudin, C. Beaumont et al., A novel type of congenital hypochromic anemia associated with a nonsense mutation in the STEAP3/TSAP6 gene, Blood, vol.118, pp.6660-6666, 2011.

H. Miyajima, Aceruloplasminemia, Neuropathol. Off. J. Jpn. Soc. Neuropathol, vol.35, pp.83-90, 2015.

I. De-domenico, D. M. Ward, M. C. Di-patti, S. Y. Jeong, S. David et al., Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin, EMBO J, vol.26, pp.2823-2831, 2007.

A. Finkenstedt, E. Wolf, E. Höfner, B. I. Gasser, S. Bösch et al., Hepatic but not brain iron is rapidly chelated by deferasirox in aceruloplasminemia due to a novel gene mutation, J. Hepatol, vol.53, pp.1101-1107, 2010.

O. Loréal, B. Turlin, C. Pigeon, A. Moisan, M. Ropert et al.,

M. Jouanolle, R. C. Vérin, K. Hider, P. Yoshida, and . Brissot, Aceruloplasminemia: new clinical, pathophysiological and therapeutic insights, J. Hepatol, vol.36, pp.851-856, 2002.

L. Poli, A. Alberici, P. Buzzi, E. Marchina, A. Lanari et al., Is aceruloplasminemia treatable? Combining iron chelation and fresh-frozen plasma treatment, Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol, vol.38, pp.357-360, 2017.

G. Galicia-poblet, E. Cid-parís, N. López-andrés, A. Losada-pajares, and J. Jurado-lópez,

M. Moreno-carralero and M. Morán-jiménez, J. Pediatr. Gastroenterol. Nutr, vol.63, pp.205-207, 2016.

C. L. Lan, A. Mosser, M. Ropert, L. Detivaud, V. Loustaud-ratti et al.,

. Jouanolle, Sex and acquired cofactors determine phenotypes of ferroportin disease, Gastroenterology, vol.140, pp.1199-1207, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00554693

M. Sabelli, G. Montosi, C. Garuti, A. Caleffi, S. Oliveto et al., Human macrophage ferroportin biology and the basis for the ferroportin disease, Hepatol. Baltim. Md, vol.65, pp.1512-1525, 2017.

S. Unal, A. Piperno, and F. Gumruk, Iron chelation with deferasirox in a patient with denovo ferroportin mutation, J. Trace Elem. Med. Biol. Organ Soc. Miner. Trace Elem. GMS, vol.30, pp.1-3, 2015.

M. Cazzola, R. Invernizzi, G. Bergamaschi, S. Levi, B. Corsi et al., Mitochondrial ferritin expression in erythroid cells from patients with sideroblastic anemia, Blood, vol.101, 1996.

A. Brownlie, A. Donovan, S. J. Pratt, B. H. Paw, A. C. Oates et al.,

S. Witkowska, L. I. Sassa, and . Zon, Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia, Nat. Genet, vol.20, pp.244-250, 1998.

L. Kautz, G. Jung, E. V. Valore, S. Rivella, E. Nemeth et al., Nat. Genet, vol.46, p.678, 2014.

M. Le-rouzic, C. Fouquet, T. Leblanc, M. Touati, F. Fouyssac et al.,

. Vannier, Non syndromic childhood onset congenital sideroblastic anemia: A report of 13 patients identified with an ALAS2 or SLC25A38 mutation, Blood Cells. Mol. Dis, vol.66, pp.11-18, 2017.

A. K. Bergmann, D. R. Campagna, E. M. Mcloughlin, S. Agarwal, M. D. Fleming et al.,

E. J. Bottomley and . Neufeld, Systematic Molecular Genetic Analysis of Congenital Sideroblastic Anemia: Evidence for Genetic Heterogeneity and Identification of Novel Mutations, Pediatr. Blood Cancer, vol.54, p.273, 2010.

D. L. Guernsey, H. Jiang, D. R. Campagna, S. C. Evans, M. Ferguson et al.,

M. Lachance, M. Matsuoka, A. Nightingale, L. Rideout, P. J. Saint-amant et al.,

M. D. Bottomley, M. Fleming, S. Ludman, C. V. Dyack, M. E. Fernandez et al., Mutations in mitochondrial carrier family gene SLC25A38 cause nonsyndromic autosomal recessive congenital sideroblastic anemia, Nat. Genet, vol.41, pp.651-653, 2009.

C. Kannengiesser, M. Sanchez, M. Sweeney, G. Hetet, B. Kerr et al., Missense SLC25A38 variations play an important role in autosomal recessive inherited sideroblastic anemia, vol.96, pp.808-813, 2011.

J. S. Caudill, H. Imran, J. C. Porcher, and D. P. Steensma, Congenital sideroblastic anemia associated with germline polymorphisms reducing expression of FECH, Haematologica, vol.93, pp.1582-1584, 2008.

R. Allikmets, W. H. Raskind, A. Hutchinson, N. D. Schueck, M. Dean et al., Mutation of a putative mitochondrial iron transporter gene (ABC7) in X-linked sideroblastic anemia and ataxia (XLSA/A), Hum. Mol. Genet, vol.8, pp.743-749, 1999.

M. D'hooghe, D. Selleslag, G. Mortier, R. Van-coster, P. Vermeersch et al., X-linked sideroblastic anemia and ataxia: a new family with identification of a fourth ABCB7 gene mutation, Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc, vol.16, pp.730-735, 2012.

Y. Bykhovskaya, K. Casas, E. Mengesha, A. Inbal, and N. Fischel-ghodsian, Missense mutation in pseudouridine synthase 1 (PUS1) causes mitochondrial myopathy and sideroblastic anemia (MLASA), Am. J. Hum. Genet, vol.74, pp.1303-1308, 2004.
DOI : 10.1086/421530

URL : https://doi.org/10.1086/421530

L. G. Riley, S. Cooper, P. Hickey, J. Rudinger-thirion, M. Mckenzie et al., Mutation of the mitochondrial tyrosyl-tRNA synthetase gene, YARS2, causes myopathy, lactic acidosis, and sideroblastic anemia-MLASA syndrome, Am. J. Hum. Genet, vol.87, pp.52-59, 2010.
DOI : 10.1016/j.ajhg.2010.06.001

URL : https://hal.archives-ouvertes.fr/hal-00530056

E. W. Sommerville, Y. S. Ng, C. L. Alston, C. Dallabona, M. Gilberti et al.,

J. C. Rawles, R. K. Dean, M. E. Petty, T. B. Farrugia, H. Haack et al.,

C. Turnbull, R. W. Donnini, G. S. Taylor, and . Gorman, Clinical Features, Molecular Heterogeneity, and Prognostic Implications in YARS2-Related Mitochondrial Myopathy, 2017.

L. C. Burrage, S. Tang, J. Wang, T. R. Donti, M. Walkiewicz et al.,

Z. Schmitt, R. Niu, J. V. Erana, B. H. Hunter, L. Graham et al., Mitochondrial myopathy, lactic acidosis, and sideroblastic anemia (MLASA) plus associated with a novel de novo mutation (m.8969G>A) in the mitochondrial encoded ATP6 gene, Mol. Genet. Metab, vol.113, pp.207-212, 2014.

J. E. Mangum, J. P. Hardee, D. K. Fix, M. J. Puppa, J. Elkes et al., Pseudouridine synthase 1 deficient mice, a model for Mitochondrial Myopathy with Sideroblastic Anemia, exhibit muscle morphology and physiology alterations, Sci. Rep, vol.6, p.26202, 2016.

T. Sato, K. Muroya, J. Hanakawa, R. Iwano, Y. Asakura et al., Clinical manifestations and enzymatic activities of mitochondrial respiratory chain complexes in Pearson marrow-pancreas syndrome with 3methylglutaconic aciduria: a case report and literature review, Eur. J. Pediatr, vol.174, pp.1593-1602, 2015.

P. K. Chakraborty, K. Schmitz-abe, E. K. Kennedy, H. Mamady, T. Naas et al.,

A. Campagna, A. K. Lau, D. H. Sendamarai, A. Wiseman, S. May et al.,

S. Marques, D. K. Hughes, S. S. Bonney, R. F. Bottomley, R. M. Wynn et al.,

. Fleming, Mutations in TRNT1 cause congenital sideroblastic anemia with immunodeficiency, fevers, and developmental delay (SIFD), Blood, vol.124, pp.2867-2871, 2014.

A. Iolascon, Transfer RNA and syndromic sideroblastic anemia, Blood, vol.124, pp.2763-2764, 2014.

A. Giannelou, H. Wang, Q. Zhou, Y. H. Park, M. S. Abu-asab et al.,

A. A. Owen, Y. Sonbul, J. E. Zhang, S. M. Niemela, M. Burgess et al.,

G. Su, S. M. Gutierrez-cruz, R. Hewitt, K. Sood, K. R. Risma et al., Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors, Ann. Rheum. Dis, 2018.

K. Oishi, G. A. Diaz-;-r, M. P. Pagon, H. H. Adam, S. E. Ardinger et al., Thiamine-Responsive Megaloblastic Anemia Syndrome, 1993.

K. Schmitz-abe, S. J. Ciesielski, P. J. Schmidt, D. R. Campagna, F. Rahimov et al., Congenital sideroblastic anemia due to mutations in the mitochondrial HSP70 homologue HSPA9, vol.126, pp.2734-2738, 2015.

D. A. Lichtenstein, A. W. Crispin, A. K. Sendamarai, D. R. Campagna, K. Schmitz-abe et al., A recurring mutation in the respiratory complex 1 protein NDUFB11 is responsible for a novel form of Xlinked sideroblastic anemia, Blood, vol.128, pp.1913-1917, 2016.

K. Schwarz, A. Iolascon, F. Verissimo, N. S. Trede, W. Horsley et al.,

K. Hopfner, R. Holzmann, M. R. Russo, D. Esposito, L. Spano et al., Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II, Nat. Genet, vol.41, pp.936-940, 2009.

A. Iolascon, H. Heimpel, A. Wahlin, and H. Tamary, Congenital dyserythropoietic anemias: molecular insights and diagnostic approach, Blood, vol.122, pp.2162-2166, 2013.

A. Gambale, A. Iolascon, I. Andolfo, and R. Russo, Diagnosis and management of congenital dyserythropoietic anemias, Expert Rev. Hematol, vol.9, pp.283-296, 2016.

R. Russo, I. Andolfo, F. Manna, G. De-rosa, L. De-falco et al., Increased levels of ERFEencodingFAM132Bin patients with congenital dyserythropoietic anemia type II, Blood, vol.128, pp.1899-1902, 2016.

K. E. Finberg, M. M. Heeney, D. R. Campagna, Y. Aydinok, H. A. Pearson et al., Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA), vol.40, pp.569-571, 2008.

L. De-falco, M. Sanchez, L. Silvestri, C. Kannengiesser, M. U. Muckenthaler et al., Iron refractory iron deficiency anemia, Haematologica, vol.98, pp.845-853, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00552375

E. Poggiali, F. Andreozzi, I. Nava, D. Consonni, G. Graziadei et al., The role of TMPRSS6 polymorphisms in iron deficiency anemia partially responsive to oral iron treatment, Am. J. Hematol, vol.90, pp.306-309, 2015.

A. E. Donker, C. C. Schaap, V. M. Novotny, R. Smeets, and T. M. Peters,

M. C. Granzen, A. J. Janssen, F. L. Rennings, P. P. Van-de-veerdonk, D. L. Brons et al., Iron refractory iron deficiency anemia: a heterogeneous disease that is not always iron refractory, Am. J. Hematol, vol.91, 2016.

N. L. Blanchette, D. H. Manz, F. M. Torti, and S. V. Torti, Modulation of hepcidin to treat iron deregulation: potential clinical applications, Expert Rev. Hematol, vol.9, pp.169-186, 2016.