M. Burnet, Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications, Br Med J, vol.1, issue.5023, pp.841-847, 1957.

G. P. Dunn, A. T. Bruce, H. Ikeda, L. J. Old, and R. D. Schreiber, Cancer immunoediting: from immunosurveillance to tumor escape, Nat Immunol, vol.3, issue.11, pp.991-998, 2002.

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, issue.5, pp.646-674, 2011.

D. S. Chen and I. Mellman, Oncology Meets Immunology: The Cancer-Immunity Cycle, Immunity, vol.39, issue.1, pp.1-10, 2013.

C. C. Goodnow, J. Sprent, . De-st, B. F. Groth, and C. G. Vinuesa, Cellular and genetic mechanisms of self tolerance and autoimmunity, Nature, vol.435, issue.7042, pp.590-597, 2005.

W. R. Heath and F. R. Carbone, Cross-Presentation in Viral Immunity and Sefl-Tolerance, Nat Rev Immunol, vol.1, issue.2, pp.126-134, 2001.

M. De-charette, A. Marabelle, and R. Houot, Turning tumour cells into antigen presenting cells: The next step to improve cancer immunotherapy?, Eur J Cancer, pp.68134-68147, 2016.

M. L. Dustin, The Immunological Synapse, Cancer Immunol Res, vol.2, issue.11, pp.1023-1033, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02164397

F. Garrido, T. Cabrera, and N. Aptsiauri, Hard" and "soft" lesions underlying the HLA class I alterations in cancer cells: Implications for immunotherapy, Int J Cancer, pp.127249-127256, 2010.

M. Challa-malladi, Y. K. Lieu, and O. Califano, Combined Genetic Inactivation of 2Microglobulin and CD58 Reveals Frequent Escape from Immune Recognition in Diffuse Large B Cell Lymphoma, Cancer Cell, vol.20, issue.6, pp.728-740, 2011.

M. Nijland, R. N. Veenstra, and L. Visser, HLA dependent immune escape mechanisms in B-cell lymphomas: Implications for immune checkpoint inhibitor therapy?, OncoImmunology, vol.6, issue.4, p.1295202, 2017.

S. Dubois, P. Viailly, and S. Mareschal, Next-Generation Sequencing in Diffuse Large B-Cell Lymphoma Highlights Molecular Divergence and Therapeutic Opportunities: a LYSA Study, Clin Cancer Res, vol.22, issue.12, pp.2919-2928, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01343064

J. Reichel, A. Chadburn, and P. G. Rubinstein, Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells, Blood, vol.125, issue.7, pp.1061-1072, 2015.

M. Roemer, R. H. Advani, and A. H. Ligon, PD-L1 and PD-L2 Genetic Alterations Define Classical Hodgkin Lymphoma and Predict Outcome, J Clin Oncol, vol.34, issue.23, pp.2690-2697, 2016.

M. Roemer, R. H. Advani, and R. A. Redd, Classical Hodgkin Lymphoma with Reduced B2M/MHC Class I Expression Is Associated with Inferior Outcome Independent of 9p24.1 Status, Cancer Immunol Res, vol.4, issue.11, pp.910-916, 2016.

M. Fangazio, D. Dominguez-sola, and F. Tabbò, Genetic Mechanisms of Immune Escape in Diffuse Large B Cell Lymphoma, Blood, vol.124, issue.21, p.1692, 2014.

M. R. Green, S. Kihira, and C. L. Liu, Mutations in early follicular lymphoma progenitors are, vol.37, pp.184-194, 2009.

K. A. Cycon, K. Mulvaney, L. M. Rimsza, D. Persky, and S. P. Murphy, Histone deacetylase inhibitors activate CIITA and MHC class II antigen expression in diffuse large B-cell lymphoma, Immunology, vol.140, issue.2, pp.259-272, 2013.

L. Pasqualucci, D. Dominguez-sola, and A. Chiarenza, Inactivating mutations of acetyltransferase genes in B-cell lymphoma, Nature, vol.471, issue.7337, pp.189-195, 2011.

M. Autio, K. Jäntti, A. Cervera, S. Hautaniemi, and S. Leppä, Low Expression of the CIITA Gene Predicts Poor Outcome in Diffuse Large BCell Lymphoma, Blood, vol.128, issue.22, p.2948, 2016.

P. J. Brown, K. K. Wong, and S. L. Felce, FOXP1 suppresses immune response signatures and MHC class II expression in activated B-celllike diffuse large B-cell lymphomas, Leukemia, vol.30, issue.3, pp.605-616, 2016.
DOI : 10.1038/leu.2015.299

URL : http://www.nature.com/leu/journal/v30/n3/pdf/leu2015299a.pdf

C. P. Hans, Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray, Blood, vol.103, issue.1, pp.275-282, 2004.

H. B. Koon, G. C. Ippolito, A. H. Banham, and P. W. Tucker, FOXP1: a potential therapeutic target in cancer, Expert Opin Ther Targets, vol.11, issue.7, pp.955-965, 2007.
DOI : 10.1517/14728222.11.7.955

URL : http://europepmc.org/articles/pmc4282158?pdf=render

E. Haralambieva, P. Adam, and R. Ventura, Genetic rearrangement of FOXP1 is predominantly detected in a subset of diffuse large B-cell lymphomas with extranodal presentation, Leukemia, vol.20, issue.7, pp.1300-1303, 2006.

S. Bea, Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve geneexpression-based survival prediction, Blood, vol.106, issue.9, pp.3183-3190, 2005.
DOI : 10.1182/blood-2005-04-1399

URL : http://www.bloodjournal.org/content/bloodjournal/106/9/3183.full.pdf

A. Mottok, B. Woolcock, and F. C. Chan, Genomic Alterations in CIITA Are Frequent in Primary Mediastinal Large B Cell Lymphoma and Are Associated with Diminished MHC Class II Expression, Cell Rep, vol.13, issue.7, pp.1418-1431, 2015.
DOI : 10.1016/j.celrep.2015.10.008

URL : https://doi.org/10.1016/j.celrep.2015.10.008

C. Steidl, S. P. Shah, and B. W. Woolcock, MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers, Nature, vol.471, issue.7338, pp.377-381, 2011.
DOI : 10.1038/nature09754

URL : http://europepmc.org/articles/pmc3902849?pdf=render

R. A. Roberts, Loss of major histocompatibility class II gene and protein expression in primary mediastinal large B-cell lymphoma is highly coordinated and related to poor patient survival, Blood, vol.108, issue.1, pp.311-318, 2006.

M. Loeffler and M. Kreuz, Genomic and epigenomic co-evolution in follicular lymphomas, Leukemia, vol.29, issue.2, pp.456-463, 2015.
DOI : 10.1038/leu.2014.209

M. R. Green, A. J. Gentles, and R. V. Nair, Hierarchy in somatic mutations arising during genomic evolution and progression of follicular lymphoma, Blood, vol.121, issue.9, pp.1604-1611, 2013.

A. Diepstra, G. W. Van-imhoff, and K. He, HLA Class II Expression by Hodgkin Reed-Sternberg Cells Is an Independent Prognostic Factor in Classical Hodgkin's Lymphoma, J Clin Oncol, vol.25, issue.21, pp.3101-3108, 2007.
DOI : 10.1200/jco.2006.10.0917

P. Brown, T. Marafioti, R. Kusec, and A. H. Banham, The FOXP1 Transcription Factor is Expressed in the Majority of Follicular Lymphomas but is Rarely Expressed in Classical and Lymphocyte Predominant Hodgkin's Lymphoma, J Mol Histol, vol.36, issue.4, pp.249-256, 2005.

S. A. Riemersma, E. S. Jordanova, and R. F. Schop, Extensive genetic alterations of the HLA region, including homozygous deletions of HLA class II genes in B-cell lymphomas arising in immune-privileged sites, Blood, vol.96, issue.10, pp.3569-3577, 2000.

A. Mottok and C. Steidl, Genomic alterations underlying immune privilege in malignant lymphomas, Curr Opin Hematol, vol.22, issue.4, pp.343-354, 2015.
DOI : 10.1097/moh.0000000000000155

D. D. Twa, A. Mottok, and F. C. Chan, Recurrent genomic rearrangements in primary testicular lymphoma: Genomic rearrangements in primary testicular lymphoma, J Pathol, vol.236, issue.2, pp.136-141, 2015.
DOI : 10.1002/path.4522

Y. He, C. J. Rivard, and L. Rozeboom, Lymphocyte-activation gene-3, an important immune checkpoint in cancer, Cancer Sci, vol.107, issue.9, pp.1193-1197, 2016.
DOI : 10.1111/cas.12986

URL : http://onlinelibrary.wiley.com/doi/10.1111/cas.12986/pdf

C. Laurent, K. Charmpi, and P. Gravelle, Several immune escape patterns in nonHodgkin's lymphomas, OncoImmunology, vol.4, issue.8, p.1026530, 2015.
DOI : 10.1080/2162402x.2015.1026530

URL : http://www.tandfonline.com/doi/pdf/10.1080/2162402X.2015.1026530?needAccess=true

M. K. Gandhi, Expression of LAG-3 by tumorinfiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients, Blood, vol.108, issue.7, pp.2280-2289, 2006.

J. M. God, C. Cameron, and J. Figueroa, Elevation of c-MYC Disrupts HLA Class IIMediated Immune Recognition of Human B Cell Tumors, J Immunol, vol.194, issue.4, pp.1434-1445, 2015.

H. Phipps-yonas, H. Cui, and N. Sebastiao, Low GILT Expression is Associated with Poor Patient Survival in Diffuse Large B-Cell Lymphoma, Front Immunol, vol.4, p.425, 2013.
DOI : 10.3389/fimmu.2013.00425

URL : https://www.frontiersin.org/articles/10.3389/fimmu.2013.00425/pdf

A. H. Sharpe and G. J. Freeman, THE B7-CD28 SUPERFAMILY, Nat Rev Immunol, vol.2, issue.2, pp.116-126, 2002.

P. Greaves and J. G. Gribben, The role of B7 family molecules in hematologic malignancy, Blood, vol.121, issue.5, pp.734-744, 2013.

N. Dakappagari, S. N. Ho, R. D. Gascoyne, J. Ranuio, A. P. Weng et al., CD80 (B7.1) is expressed on both malignant B cells and nonmalignant stromal cells in non-Hodgkin lymphoma, Cytometry B Clin Cytom, vol.82, issue.2, pp.112-119, 2012.

A. T. Stopeck, A. Gessner, and T. P. Miller, Loss of B7. 2 (CD86) and intracellular adhesion molecule 1 (CD54) expression is associated with decreased tumor-infiltrating T lymphocytes in diffuse B-cell large-cell lymphoma, Clin Cancer Res, vol.6, issue.10, pp.3904-3909, 2000.

M. J. Terol, A. López-guillermo, and F. Bosch, Expression of the adhesion molecule ICAM1 in non-Hodgkin's lymphoma: relationship with tumor dissemination and prognostic importance, J Clin Oncol, vol.16, issue.1, pp.35-40, 1998.

J. J. Muris, C. J. Meijer, G. J. Ossenkoppele, W. Vos, and J. J. Oudejans, Apoptosis resistance and response to chemotherapy in primary nodal diffuse large B-cell lymphoma, Hematol Oncol, vol.24, issue.3, pp.97-104, 2006.

J. Muris, B. Ylstra, and S. Cillessen, Profiling of apoptosis genes allows for clinical stratification of primary nodal diffuse large B-cell lymphomas, Br J Haematol, vol.136, issue.1, pp.38-47, 2007.

B. A. Bladergroen, C. Meijer, and R. L. Ten-berge, Expression of the granzyme B inhibitor, protease inhibitor 9, by tumor cells in patients with non-Hodgkin and Hodgkin lymphoma: a novel protective mechanism for tumor cells to circumvent the immune system?, Blood, vol.99, issue.1, pp.232-237, 2002.

C. H. Bird, V. R. Sutton, and J. Sun, Selective Regulation of Apoptosis: the Cytotoxic Lymphocyte Serpin Proteinase Inhibitor 9 Protects against Granzyme B-Mediated Apoptosis without Perturbing the Fas Cell

, Death Pathway. Mol Cell Biol, vol.18, issue.11, pp.6387-6398, 1998.

J. Muris, C. Meijer, and S. Cillessen, Prognostic significance of activated cytotoxic T-lymphocytes in primary nodal diffuse large B-cell lymphomas, Leukemia, vol.18, issue.3, pp.589-596, 2004.

M. Van-eijk, T. Defrance, A. Hennino, and C. De-groot, Death-receptor contribution to the germinal-center reaction, Trends Immunol, vol.22, issue.12, pp.677-682, 2001.

S. Afshar-sterle, D. Zotos, and N. J. Bernard, Fas ligand-mediated immune surveillance by T cells is essential for the control of spontaneous B cell lymphomas, Nat Med, vol.20, issue.3, pp.283-290, 2014.

E. Kondo, T. Yoshino, and I. Yamadori, Expression of Bcl-2 protein and Fas antigen in non-Hodgkin's lymphomas, Am J Pathol, vol.145, issue.2, p.330, 1994.

A. Chatzitolios, I. Venizelos, G. Tripsiannis, G. Anastassopoulos, and N. Papadopoulos, Prognostic significance of CD95, P53, and BCL2 expression in extranodal nonHodgkin's lymphoma, Ann Hematol, vol.89, issue.9, pp.889-896, 2010.

O. Zoi-toli, C. J. Meijer, J. J. Oudejans, E. De-vries, P. Van-beek et al., Expression of Fas and Fas ligand in cutaneous B-cell lymphomas, J Pathol, vol.189, issue.4, pp.533-538, 1999.

B. Eser, I. Sari, and O. Canoz, Prognostic significance of Fas (CD95/APO-1) positivity in patients with primary nodal diffuse large Bcell lymphoma, Am J Hematol, vol.81, issue.5, pp.307-314, 2006.

O. Markovic, D. Marisavljevic, and V. Cemerikic, Clinical and prognostic significance of apoptotic profile in patients with newly diagnosed nodal diffuse large B-cell lymphoma (DLBCL): Apoptosis in nodal diffuse large B-cell lymphoma, Eur J Haematol, vol.86, issue.3, pp.246-255, 2011.

S. Poppema, Immunobiology and pathophysiology of Hodgkin lymphomas, Hematology Am Soc Hematol Educ Program, pp.231-238, 2005.

M. Müschen, K. Rajewsky, M. Krönke, and R. Küppers, The origin of CD95-gene mutations in B-cell lymphoma, Trends Immunol, vol.23, issue.2, pp.75-80, 2002.

K. Grønbaek, P. T. Straten, and E. Ralfkiaer, Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity, Blood, vol.92, issue.9, pp.3018-3024, 1998.

N. Niitsu, K. Sasaki, and M. Umeda, A high serum soluble Fas/APO-1 level is associated with a poor outcome of aggressive non-Hodgkin's lymphoma, Leukemia, vol.13, issue.9, pp.1434-1440, 1999.

T. Hara, H. Tsurumi, and M. Takemura, Serum-soluble fas level determines clinical symptoms and outcome of patients with aggressive non-Hodgkin's lymphoma, Am J Hematol, vol.64, issue.4, pp.257-261, 2000.

T. Hara, H. Tsurumi, and N. Goto, Serum soluble Fas level determines clinical outcome of patients with diffuse large B-cell lymphoma treated with CHOP and R-CHOP, J Cancer Res Clin Oncol, vol.135, issue.10, pp.1421-1428, 2009.

B. Heredia-galvez, J. Ruiz-cosano, and D. Torresmoreno, Association of polymorphisms in TRAIL1 and TRAILR1 genes with susceptibility to lymphomas, Ann Hematol, vol.93, issue.2, pp.243-247, 2014.

N. Zerafa, J. A. Westwood, and E. Cretney, Cutting edge: TRAIL deficiency accelerates hematological malignancies, J Immunol, vol.175, issue.9, pp.5586-5590, 2005.

S. H. Lee, M. S. Shin, and H. S. Kim, Somatic mutations of TRAIL-receptor 1 and TRAILreceptor 2 genes in non-Hodgkin's lymphoma, Oncogene, vol.20, issue.3, p.399, 2001.

K. H. Young, D. D. Weisenburger, and B. J. Dave, Mutations in the DNA-binding codons of TP53, which are associated with decreased expression of TRAILreceptor-2, predict for poor survival in diffuse large B-cell lymphoma, Blood, vol.110, issue.13, pp.4396-4405, 2007.

F. Rubio-moscardo, J. Climent, and R. Siebert, Mantle-cell lymphoma genotypes identified with CGH to BAC microarrays define a leukemic subgroup of disease and predict patient outcome, Blood, vol.105, issue.11, pp.4445-4454, 2005.

K. Singh and J. M. Briggs, Functional Implications of the spectrum of BCL2 mutations in Lymphoma, Mutat Res Mutat Res, vol.769, pp.1-18, 2016.

R. D. Morin, M. Mendez-lago, and A. J. Mungall, Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma, Nature, vol.476, issue.7360, p.298, 2011.

J. M. Schuetz, N. A. Johnson, and R. D. Morin, BCL2 mutations in diffuse large B-cell lymphoma, Leukemia, vol.26, issue.6, p.1383, 2012.

S. Huet, E. Szafer-glusman, and B. Tesson, BCL2 mutations do not confer adverse prognosis in follicular lymphoma patients treated with rituximab, Am J Hematol, vol.92, issue.6, pp.515-519, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01524901

J. Iqbal, W. G. Sanger, and D. E. Horsman, BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma, Am J Pathol, vol.165, issue.1, pp.159-166, 2004.

N. Mounier, J. Briere, and C. Gisselbrecht, Rituximab plus CHOP (R-CHOP) overcomes bcl-2-associated resistance to chemotherapy in elderly patients with diffuse large B-cell lymphoma (DLBCL), Blood, vol.101, issue.11, pp.4279-4284, 2003.

N. Akyurek, A. Uner, M. Benekli, and I. Barista, Prognostic significance of MYC , BCL2 , and BCL6 rearrangements in patients with diffuse large B-cell lymphoma treated with cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab: MYC, BCL2, BCL6 Rearrangements in DLBCL, Cancer, vol.118, issue.17, pp.4173-4183, 2012.

F. Grange, T. Petrella, and M. Beylot-barry, Bcl-2 protein expression is the strongest independent prognostic factor of survival in primary cutaneous large B-cell lymphomas, Blood, vol.103, issue.10, pp.3662-3668, 2004.

C. Correia, P. A. Schneider, and H. Dai, BCL2 mutations are associated with increased risk of transformation and shortened survival in follicular lymphoma, Blood, vol.125, issue.4, pp.658-667, 2015.

J. Kiyasu, H. Miyoshi, and A. Hirata, Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma, Blood, vol.126, pp.2193-2201, 2015.

J. R. Bledsoe, R. A. Redd, and R. P. Hasserjian, The immunophenotypic spectrum of primary mediastinal large B-cell lymphoma reveals prognostic biomarkers associated with outcome: Immunophenotypic Prognostic Markers in PMBL, Am J Hematol, vol.91, issue.10, pp.436-441, 2016.

A. S. Berghoff, G. Ricken, and G. Widhalm, PD1 (CD279) and PD-L1 (CD274, B7H1) expression in primary central nervous system lymphomas (PCNSL), Clin Neuropathol, vol.33, issue.1, pp.42-49, 2014.
DOI : 10.5414/np300698

M. R. Green, S. Monti, and S. J. Rodig, Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma, Blood, vol.116, issue.17, pp.3268-3277, 2010.

D. Twa, F. C. Chan, and S. Ben-neriah, Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma, Blood, vol.123, issue.13, pp.2062-2065, 2014.
DOI : 10.1182/blood-2013-10-535443

URL : http://www.bloodjournal.org/content/bloodjournal/123/13/2062.full.pdf

B. Chapuy, M. G. Roemer, and C. Stewart, Targetable genetic features of primary testicular and primary central nervous system lymphomas, Blood, vol.127, issue.7, pp.869-881, 2016.
DOI : 10.1182/blood-2015-10-673236

URL : http://www.bloodjournal.org/content/bloodjournal/127/7/869.full.pdf

K. Georgiou, L. Chen, and M. Berglund, Genetic basis of PD-L1 overexpression in diffuse large B-cell lymphomas, Blood, vol.127, issue.24, pp.3026-3034, 2016.
DOI : 10.1182/blood-2015-12-686550

URL : http://www.bloodjournal.org/content/bloodjournal/127/24/3026.full.pdf

K. Kataoka, Y. Shiraishi, and Y. Takeda, Aberrant PD-L1 expression through 3-UTR disruption in multiple cancers, Nature, vol.534, issue.7607, pp.402-406, 2016.
DOI : 10.1038/nature18294

M. R. Green, S. Rodig, and P. Juszczynski, Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy, Clin Cancer Res Off J Am Assoc Cancer Res, vol.18, issue.6, pp.1611-1618, 2012.
DOI : 10.1158/1078-0432.ccr-11-1942

URL : http://clincancerres.aacrjournals.org/content/18/6/1611.full.pdf

D. Rossille, M. Gressier, and D. Damotte, High level of soluble programmed cell death ligand 1 in blood impacts overall survival in aggressive diffuse large B-Cell lymphoma: results from a French multicenter clinical trial, Leukemia, vol.28, issue.12, pp.2367-2375, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00981338

D. Rossille, I. Azzaoui, and A. L. Feldman, Soluble programmed death-ligand 1 as a prognostic biomarker for overall survival in patients with diffuse large B-cell lymphoma: a replication study and combined analysis of 508 patients, Leukemia, vol.31, issue.4, p.988, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01517052

E. D. Carosella, N. Rouas-freiss, D. Roux, P. Moreau, J. Lemaoult et al., Advances in Immunology, pp.33-144, 2015.

D. Jesionek-kupnicka, M. Bojo, and M. Prochorecsobieszek, HLA-G and MHC Class II Protein Expression in Diffuse Large B-Cell Lymphoma, Arch Immunol Ther Exp (Warsz), vol.64, issue.3, pp.225-240, 2016.

G. Caocci, M. Greco, and D. Fanni, HLA-G expression and role in advanced-stage classical Hodgkin lymphoma, Eur J Histochem, vol.60, issue.2, p.2606, 2016.

A. Diepstra, S. Poppema, and M. Boot, HLAG protein expression as a potential immune escape mechanism in classical Hodgkin's lymphoma, Tissue Antigens, vol.71, issue.3, pp.219-226, 2008.

Y. Sebti, L. Maux, A. Gros, and F. , Expression of functional soluble human leucocyte antigen-G molecules in lymphoproliferative disorders, Br J Haematol, vol.138, issue.2, pp.202-212, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00690715

Y. Sebti, L. Friec, G. Pangault, and C. , Soluble HLA-G molecules are increased in lymphoproliferative disorders, Hum Immunol, vol.64, issue.11, pp.1093-1101, 2003.

P. Yong, S. J. Kim, S. J. Lee, and B. S. Kim, Serum level of soluble human leukocyte antigen-G molecules in non-Hodgkin lymphoma: Does it have a prognostic value, Leuk Lymphoma, vol.49, issue.8, pp.1623-1626, 2008.

A. N. Barclay and T. K. Van-den-berg, The Interaction Between Signal Regulatory Protein Alpha (SIRP-a) and CD47: Structure, Function, and Therapeutic Target, Annu Rev Immunol, vol.32, issue.1, pp.25-50, 2014.

M. P. Chao, A. A. Alizadeh, and C. Tang, AntiCD47 Antibody Synergizes with Rituximab to Promote Phagocytosis and Eradicate NonHodgkin Lymphoma, Cell, vol.142, issue.5, pp.699-713, 2010.

M. P. Chao, C. Tang, R. K. Pachynski, R. Chin, R. Majeti et al., Extranodal dissemiis inhibited by anti-CD47 antibody therapy, Blood, vol.118, issue.18, pp.4890-4901, 2011.

X. Liu, Y. Pu, and K. Cron, CD47 blockade triggers T cell-mediated destruction of immunogenic tumors, Nat Med, vol.21, issue.10, pp.1209-1215, 2015.

M. E. Peter, A. Hadji, and A. E. Murmann, The role of CD95 and CD95 ligand in cancer, Cell Death Differ, vol.22, issue.4, pp.549-559, 2015.

L. Müllauer, I. Mosberger, and A. Chott, Fas ligand expression in nodal non-Hodgkin's lymphoma, Mod Pathol, vol.11, issue.4, pp.369-375, 1998.

C. S. Verbeke, U. Wenthe, R. Grobholz, and H. Zentgraf, Fas ligand expression in Hodgkin lymphoma, Am J Surg Pathol, vol.25, issue.3, pp.388-394, 2001.

D. W. Scott and R. D. Gascoyne, The tumour microenvironment in B cell lymphomas, Nat Rev Cancer, vol.14, issue.8, pp.517-534, 2014.

K. W. Moore, R. De-waal-malefyt, R. L. Coffman, O. Garra, and A. , Interleukin-10 and the interleukin-10 receptor, Annu Rev Immunol, pp.19683-765, 2001.

E. Bien, A. Balcerska, E. Adamkiewiczdrozynska, M. Rapala, M. Krawczyk et al., Pre-treatment serum levels of interleukin-10, interleukin-12 and their ratio predict response to therapy and probability of event-free and overall survival in childhood soft tissue sarcomas, Hodgkin's lymphomas and acute lymphoblastic leukemias, Clin Biochem, vol.42, pp.1144-1157, 2009.

E. Lech-maranda, J. Bienvenu, and F. Broussaisguillaumot,

, Level-Based Prognostic Model Predicts Outcome of Patients with Diffuse Large BCell Lymphoma in Different Risk Groups Defined by the International Prognostic Index, Arch Immunol Ther Exp (Warsz), vol.58, issue.2, pp.131-141, 2010.

C. Visco, T. P. Vassilakopoulos, and K. O. Kliche, Elevated Serum Levels of IL-10 are Associated with Inferior Progression-Free Survival in Patients with Hodgkin's Disease Treated with Radiotherapy, Leuk Lymphoma, vol.45, issue.10, pp.2085-2092, 2004.

Z. Yang, D. M. Grote, and B. Xiu, TGFupregulates CD70 expression and induces exhaustion of effector memory T cells in Bcell non-Hodgkin's lymphoma, Leukemia, vol.28, issue.9, pp.1872-1884, 2014.

J. G. Taylor and J. G. Gribben, Microenvironment abnormalities and lymphomagenesis: Immunological aspects, Semin Cancer Biol, pp.3436-3481, 2015.

S. Mao, W. Yang, A. L. Li, Z. , and J. J. , Transforming growth factor type II receptor as a marker in diffuse large B cell lymphoma, Tumor Biol, vol.36, issue.12, pp.9903-9908, 2015.

H. Pan, Y. Jiang, and M. Boi, Epigenomic evolution in diffuse large B-cell lymphomas, Nat Commun, p.66921, 2015.

M. Bakkebø, K. Huse, V. I. Hilden, E. B. Smeland, and M. P. Oksvold, TGF-induced growth inhibition in B-cell lymphoma correlates with Smad1/5 signalling and constitutively active p38 MAPK, BMC Immunol, vol.11, issue.1, p.57, 2010.

M. Yokoyama, M. Ichinoe, and S. Okina, CD109, a negative regulator of TGF-signaling, is a putative risk marker in diffuse large B-cell lymphoma, Int J Hematol, vol.105, issue.5, pp.614-622, 2017.

G. Frumento, R. Rotondo, M. Tonetti, G. Damonte, U. Benatti et al., Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3dioxygenase, J Exp Med, vol.196, issue.4, pp.459-468, 2002.

J. Choe, J. Y. Yun, and Y. K. Jeon, Indoleamine 2, 3-dioxygenase (IDO) is frequently expressed in stromal cells of Hodgkin lymphoma and is associated with adverse clinical features: a retrospective cohort study, BMC Cancer, vol.14, issue.1, p.1, 2014.

S. Ninomiya, T. Hara, and H. Tsurumi, Indoleamine 2,3-dioxygenase in tumor tissue indicates prognosis in patients with diffuse large B-cell lymphoma treated with RCHOP, Ann Hematol, vol.90, issue.4, pp.409-416, 2011.

T. Yoshikawa, T. Hara, and H. Tsurumi, Serum concentration of L-kynurenine predicts the clinical outcome of patients with diffuse large B-cell lymphoma treated with RCHOP, Eur J Haematol, vol.84, issue.4, pp.304-309, 2010.

X. Liu, K. Lu, and L. Feng, Up-regulated expression of indoleamine 2,3-dioxygenase 1 in non-Hodgkin lymphoma correlates with increased regulatory T-cell infiltration, Leuk Lymphoma, vol.55, issue.2, pp.405-414, 2014.

A. Masaki, T. Ishida, and Y. Maeda, Clinical significance of tryptophan catabolism in Hodgkin lymphoma, Cancer Sci, vol.109, issue.1, pp.74-83, 2018.

M. Giordano, D. O. Croci, and G. A. Rabinovich, Galectins in hematological malignancies, Curr Opin Hematol, vol.20, issue.4, pp.327-335, 2013.

K. K. Hoyer, M. Pang, and D. Gui, An antiapoptotic role for galectin-3 in diffuse large B-cell lymphomas, Am J Pathol, vol.164, issue.3, pp.893-902, 2004.

M. C. Clark, M. Pang, and D. K. Hsu, Galectin3 binds to CD45 on diffuse large B-cell lymphoma cells to regulate susceptibility to cell death, Blood, vol.120, issue.23, pp.4635-4644, 2012.

C. A. Lindqvist and A. Loskog, T regulatory cells in B-cell malignancy-tumour support or kiss of death?, Immunology, vol.135, issue.4, pp.255-260, 2012.

S. Mittal, N. A. Marshall, L. Duncan, D. J. Culligan, R. N. Barker et al., Local and systemic induction of CD4+ CD25+ regulatory T-cell population by non-Hodgkin lymphoma, Blood, vol.111, issue.11, pp.5359-5370, 2008.

W. Wu, J. Wan, R. Xia, Z. Huang, J. Ni et al., Functional role of regulatory T cells in B cell lymphoma and related mechanisms, Int J Clin Exp Pathol, vol.8, issue.8, p.9133, 2015.

T. Ishida and R. Ueda, CCR4 as a novel molecular target for immunotherapy of cancer, Cancer Sci, vol.97, issue.11, pp.1139-1146, 2006.

X. Liu, G. Venkataraman, and J. Lin, Highly clonal regulatory T-cell population in follicular lymphoma-inverse correlation with the diversity of CD8(+) T cells

, Oncoimmunology, vol.4, issue.5, p.1002728, 2015.

C. Chang, S. Wu, and Y. Kang, High Levels of Regulatory T Cells in Blood Are a Poor Prognostic Factor in Patients With Diffuse Large B-Cell Lymphoma, Am J Clin Pathol, vol.144, issue.6, pp.935-944, 2015.

M. Roussel, J. M. Irish, C. Menard, F. Lhomme, K. Tarte et al., Regulatory myeloid cells: an underexplored continent in B-cell lymphomas, Cancer Immunol Immunother, vol.66, issue.8, pp.1103-1111, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01579827

I. Azzaoui, F. Uhel, and D. Rossille, T-cell defect in diffuse large B-cell lymphomas involves expansion of myeloid-derived suppressor cells, Blood, vol.128, issue.8, pp.1081-1092, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01394657

Y. Komohara, D. Niino, K. Ohnishi, K. Ohshima, and M. Takeya, Role of tumor-associated macrophages in hematological malignancies: TAMs in hematological malignancies

, Pathol Int, vol.65, issue.4, pp.170-176, 2015.

B. Guo, H. Cen, X. Tan, and Q. Ke, Meta-analysis of the prognostic and clinical value of tumorassociated macrophages in adult classical Hodgkin lymphoma, BMC Med, vol.14, issue.1, p.159, 2016.

Y. W. Koh, S. Shin, C. Park, D. H. Yoon, C. Suh et al., Absolute monocyte count predicts overall survival in mantle cell lymphomas: correlation with tumour-associated macrophages, Hematol Oncol, vol.32, issue.4, pp.178-186, 2014.

A. Kessel, I. Rosner, and E. Toubi, Rituximab: Beyond Simple B Cell Depletion, Clin Rev Allergy Immunol, vol.34, issue.1, pp.74-79, 2008.

D. Canioni, G. Salles, and N. Mounier, High Numbers of Tumor-Associated Macrophages Have an Adverse Prognostic Value That Can Be Circumvented by Rituximab in Patients With Follicular Lymphoma Enrolled Onto the GELA-GOELAMS FL-2000 Trial, J Clin Oncol, vol.26, issue.3, pp.440-446, 2008.

T. Takakuwa, Z. Dong, and S. Nakatsuka, Frequent mutations of Fas gene in nasal NK/T cell lymphoma, Oncogene, vol.21, issue.30, p.4702, 2002.

E. Contassot and L. E. French, Epigenetic Causes of Apoptosis Resistance in Cutaneous T-Cell Lymphomas, J Invest Dermatol, vol.130, issue.4, pp.922-924, 2010.

M. P. Oyarzo, L. J. Medeiros, and C. Atwell, cFLIP confers resistance to FAS-mediated apoptosis in anaplastic large-cell lymphoma, Blood, vol.107, issue.6, pp.2544-2547, 2006.

L. Falchi, Immune Dysfunction in NonHodgkin Lymphoma: Avenues for New Immunotherapy-Based Strategies, Curr Hematol Malig Rep, vol.12, issue.5, pp.484-494, 2017.

X. Ni, P. Hazarika, C. Zhang, R. Talpur, and M. Duvic, Fas Ligand Expression by Neoplastic T Lymphocytes Mediates Elimination of CD8+ Cytotoxic T Lymphocytes in Mycosis Fungoides: A Potential Mechanism of Tumor Immune Escape?, Clin Cancer Res, vol.7, issue.9, pp.2682-2692, 2001.

M. H. Vermeer, R. Van-doorn, D. Dukers, M. W. Bekkenk, C. Meijer et al., CD8+ T Cells in Cutaneous T-Cell Lymphoma: Expression of Cytotoxic Proteins, Fas Ligand, and Killing Inhibitory Receptors and Their Relationship With Clinical Behavior, J Clin Oncol, vol.19, issue.23, pp.4322-4329, 2001.

A. Masaki, T. Ishida, and Y. Maeda, Prognostic Significance of Tryptophan Catabolism in Adult T-cell

/. Leukemia and . Lymphoma, Clin Cancer Res, vol.21, issue.12, pp.2830-2839, 2015.

C. L. Batlevi, E. Matsuki, R. J. Brentjens, and A. Younes, Novel immunotherapies in lymphoid malignancies, Nat Rev Clin Oncol, vol.13, issue.1, pp.25-40, 2015.

G. Manson and R. Houot, Next generation immunotherapies for lymphoma: one foot in the future, Ann Oncol, vol.29, issue.3, pp.588-601, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01831048

L. Zitvogel, L. Apetoh, F. Ghiringhelli, and G. Kroemer, Immunological aspects of cancer chemotherapy, Nat Rev Immunol, vol.8, issue.1, pp.59-73, 2008.

S. D. Puvvada, H. Li, and L. M. Rimsza, A phase II study of belinostat (PXD101) in relapsed and refractory aggressive B-cell lymphomas: SWOG S0520, Leuk Lymphoma, vol.57, issue.10, pp.2359-2369, 2016.

D. O. Persky, H. Li, and L. M. Rimsza, A phase I/II trial of vorinostat (SAHA) in combination with rituximab-CHOP in patients with newly diagnosed advanced stage diffuse large B-cell lymphoma (DLBCL): SWOG S0806, Am J Hematol, vol.93, issue.4, pp.486-493, 2018.

M. S. Davids, Targeting BCL-2 in B-cell lymphomas, Blood, vol.130, issue.9, pp.1081-1088, 2017.

L. Galluzzi, A. Buqué, O. Kepp, L. Zitvogel, and G. Kroemer, Immunological Effects of Conventional Chemotherapy and Targeted

, Anticancer Agents. Cancer Cell, vol.28, issue.6, pp.690-714, 2015.

C. H. Ries, M. A. Cannarile, and S. Hoves, Targeting Tumor-Associated Macrophages with Anti-CSF-1R Antibody Reveals a Strategy for Cancer Therapy, Cancer Cell, vol.25, issue.6, pp.846-859, 2014.

E. Romano, M. Kusio-kobialka, and P. G. Foukas, Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients, Proc Natl Acad Sci USA, vol.112, pp.6140-6145, 2015.

A. Vargas, F. Furness, A. Litchfield, and K. , Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies, Cancer Cell, vol.33, issue.4, pp.649-663, 2018.

S. Fuji, Y. Inoue, and A. Utsunomiya, Pretransplantation Anti-CCR4 Antibody Mogamulizumab Against Adult T-Cell Leukemia/Lymphoma Is Associated With Significantly Increased Risks of Severe and Corticosteroid-Refractory Graft-VersusHost Disease, Nonrelapse Mortality, and Overall Mortality, J Clin Oncol, vol.34, issue.28, pp.3426-3433, 2016.

S. Ninomiya, N. Narala, and L. Huye, Tumor indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR T cells and is downregulated by lymphodepleting drugs, Blood, vol.125, issue.25, pp.3905-3916, 2015.

L. Hanafi, D. Gauchat, and J. Godin-ethier, Fludarabine Downregulates Indoleamine 2,3-Dioxygenase in Tumors via a Proteasome-Mediated Degradation Mechanism, PLoS One, vol.9, issue.6, p.99211, 2014.

M. Boice, D. Salloum, and F. Mourcin, Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells, Cell, vol.167, issue.2, pp.405-418, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01405853

E. Launay, C. Pangault, and P. Bertrand, High rate of TNFRSF14 gene alterations related to 1p36 region in de novo follicular lymphoma and impact on prognosis, Leukemia, vol.26, issue.3, p.559, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00869037

K. Cheung, N. A. Johnson, and J. G. Affleck, Acquired TNFRSF14 Mutations in Follicular Lymphoma Are Associated with Worse Prognosis, Cancer Res, vol.70, issue.22, pp.9166-9174, 2010.

J. Wu and G. S. Wood, Reduction of Fas/CD95 Promoter Methylation, Upregulation of Fas Protein, and Enhancement of Sensitivity to Apoptosis in Cutaneous T-Cell Lymphoma, Arch Dermatol, vol.147, issue.4, pp.443-449, 2011.

R. Dong, R. Dong, and M. Zhang, Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy (Review), Int J Mol Med, vol.41, issue.2, pp.599-614, 2018.

T. Jelinek, J. Mihalyova, M. Kascak, J. Duras, and R. Hajek, PD-1/PD-L1 inhibitors in haematological malignancies: update 2017, Immunology, vol.152, issue.3, pp.357-371, 2017.

L. Llorente, Y. Richaud-patin, and C. García-padilla, Clinical and biologic effects of antiinterleukin-10 monoclonal antibody administration in systemic lupus erythematosus, Arthritis Rheum, vol.43, issue.8, pp.1790-1800, 2000.

A. P. Vicari, C. Chiodoni, and C. Vaure, Reversal of Tumor-induced Dendritic Cell Paralysis by, CpG Immunostimulatory Oligonucleotide and Anti-Interleukin, vol.10

, Receptor Antibody, J Exp Med, vol.196, issue.4, pp.541-549, 2002.

X. Ni, T. Langridge, and M. Duvic, Depletion of regulatory T cells by targeting CC chemokine receptor type 4 with mogamulizumab, Oncoimmunology, vol.4, issue.7, p.1011524, 2015.