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Abstract 

This paper focus on the onset of the movement of particles placed on a horizontal rough 

surface subjected to a vertical sinusoidal vibration. We track the problem through 

experiments, theory and numerical simulations. The frequencies needed to put particles in 

movement decays exponentially with the input amplitude of the oscillations. This behavior 

is explained through a simple approach where a forced damped harmonic oscillator is used 

with a spring constant representing all the interactions between the particle and the surface. 

The numerical results compare well with the experimental ones, proving that the forces 

included in the numerical calculations are suitable to account for the main aspects of the 

problem, even though that the complexity of the surface is not fully accounted for. 

Describing the way in which the frequency varies with amplitude could be relevant when 

technological applications like, for instance, surface cleaning take place. 
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1. Introduction 
 
The displacement of grains in industrial processes frequently implies external energy 

supply through agitation in conveyor belts, truck transport, drilling operations, among 

many others. As a result, the manipulation of granular matter always carries secondary 

effects, desired or not. Segregation, crushing, jamming, flow fluctuations, particle 

resuspension and saltation are just some examples. Much scientific attention is dedicated to 

the solution of the problems related to granular materials behavior, but many questions, 

especially those related to the microscopic interaction between grains and surfaces, are not 

yet solved. 

It has been proven that the initiation of movement of particles deposited on a surface is 

crucial to predict their possible further resuspension by air flow turbulence (Henry & 

Minier (2014); Reeks & Hall (2001); Valenzuela Aracena et al. (2017)). The concept of 

“fluid threshold” (or the “aerodynamic threshold”) is already introduced by Bagnold many 

years ago (Bagnold, R.A. (1941); Chepil (1945); Zingg (1953)). On the other hand, initial 

destabilization of sand grains by the wind is important to answer if transport of sandy 

matter in desert geography can be expected (Oger & Valance (2017)). 

In the same way, vibration, as a perturbation of particle’s equilibrium, is relevant in many 

theoretical and applied problems, like, for instance, the removal of small particles from 

surfaces in engineering applications (Ziskind, Fichman & Gutfinger (2000)). Likewise, in 

granular matter manipulation stages, the mechanical vibration of grains, either horizontal or 

vertical, is also an important external perturbation. 

Naturally, if the vertical vibration can compensate the gravitational acceleration, jumps are 

observed as typical movements for the grains. Studies of the fluidization of granular beds 

subjected to vibrations are commonly found in the literature (Eshuis et al. (2007), Renard et 



al. (2001), Mawatari et al. (2002)), where the critical intensity of the external excitations to 

fluidize the grains is investigated. Moreover, even jamming of a drained granular medium 

can be observed depending on the time needed for rearrangements of the grains (D′Anna & 

Gremaud (2001)). In recent years, the formation of patterns on the surface of vibrated 

layers of grains has been extensively studied. Depending on the whole set of parameters 

(amplitude and frequency of the excitation, shape and size of grains and container, and so 

on) different kinds of standing waves can be observed, with varied textures (Melo, 

Umbanhowar & Swinney (1994); Melo, Umbanhowar & Swinney (1995); Metcalf, Knight 

& Jaeger (1997)). On the other hand, basic studies concerning the excitation of small 

spheres deposited on a horizontal platform has been conducted in the past (Ripperger & 

Hein (2005); Tippayawong & Preechawuttipong (2011)). 

The first step to describe a system consisting of a particle sitting on a vibrating surface can 

be performed considering a mechanical approach as the one presented in Dybwad (1985). 

In that work, the author studies the problem of a particle of mass m deposited on a vibrated 

surface (quartz resonator) as two coupled springs. The particle is linked to the surface 

through an elastic force with constant k. The quartz resonator has a mass M and an elastic 

constant K, and its resonance frequency only depends on its elastic properties. The 

frequency of the coupled system (particle - quartz resonator) results to depend on the elastic 

force constant, k, of the particle. The behavior of that frequency is found to contradict the 

mass loading expectation, i.e., that the frequency of an oscillating system will decreases 

when its mass increases. An experimental estimation of the value of the elastic constant 

shows that the actual area of contact of the two touching solids (particle and surface) is very 

much less than their geometrical area, i.e., than the area of contact that could be determined 



through a direct calculation, given that it may be lowered by the presence of roughness on 

the surfaces (Dybwad (1985)). 

As a second step in the description of the perturbation of a particle deposited on a surface, 

several linear and nonlinear oscillation models are introduced and analyzed in Ziskind, 

Fichman & Gutfinger (2000) to demonstrate whether particle removal is possible for soft 

and hard particles on smooth and rough surfaces. One of the conclusions in that paper is 

that the natural frequency may be reduced by up to two orders of magnitude in case that the 

distance between two contacts at which the particle touches the surface is much smaller 

than the particle radius. Besides, they emphasize the idea that behavior of particles is like if 

they were linked to the surface by springs (Dabros, Warszynsky& van de Ven (1994); 

Ziskind, Fichman & Gutfinger (2000)). 

Experiments using aerosol particles deposited on a vibrating glass surface demonstrate that 

the wall vibration plays two opposite roles, i.e., to increase the separation force between 

particles and the wall, and to increase the particle deposition rate due to active capture of 

aerosol particles (Theerachaisupakij et al. (2002)). In the same way, analytical models show 

that frequency of particle-surface interaction is found to significantly influence the removal 

rate of micro-particles from a vibrating surface (Tippayawong & Preechawuttipong 

(2011)). Besides, the description of the re-entrainment process implies the analysis of 

adhesion and capillary forces between the particle and the surface, the inertia of the particle 

when accelerated and its contact interaction with the particles belonging to the surface, 

especially in cases where roughness is of the order of the size of the beads deposited on it. 

For that reason, the vibration of a surface as an indirect method for the measurement of 

adhesion forces between a particle and a wall is used in Hein et al. (2002), by correlating 

particle re-entrainment events with the acting acceleration. 



To conclude, we may say that the dynamic involved in the initiation of a particle movement 

on a surface subjected to an external perturbation is not simple, and the inclusion of all the 

parameters playing a role is not straightforward (Mullins et al. (1992)), even when only a 

threshold velocity for movement initiation is looked for (Soepyan et al. (2016)). As a result, 

the conditions under which the incipient movement of grains subjected to vibration is 

expected are still an open-question topic, even for particles of the millimeter sizes. 

The aim of the present study is to predict the critical conditions for a particle to move when 

it rests on a vibrating surface, and to evaluate the physical parameters involved in this 

process. To pursue this objective we perform series of experiments over rough surfaces 

(built with micrometer glass beads) where different particle sizes (within the millimeter 

range) are deposited for vibration. We also develop a theoretical approach that describes the 

main aspects of the experimental behavior found here. The idea behind is to find the critical 

frequency-amplitude pairs needed to initiate the movement of the deposited grains for 

different bead sizes and materials and to prove that the system behaves like a forced 

damped oscillator with a weak elastic constant (compared to that of the particle’s material) 

given by the force interaction between particle and surface. In this sense we follow the 

former ideas developed in the works by Dybwad (1985) and Ziskind, Fichman & Gutfinger 

(2000). 

To reinforce our goal, we also perform some numerical tests using a Discrete Element 

Method with the appropriate interactions between the grains and the surface, to model the 

experimental conditions (Herrmann & Luding (1998); Luding (1998)). Indeed, we simulate 

a set of experimental results where a good agreement is found when we include the 

presence of elastic forces due to the bead material and also those due to adhesion and 

capillary effects. 



 

2. Experiments 
 
2.1. Experimental setup and materials 
 
The device for the experiments consists of the sinusoidal vertical vibration of a horizontal 

rough surface on which beads are placed in order to study the onset of their movement. The 

rough surface is built by gluing glass beads on a flat circular plate with a diameter of 6 cm. 

We work with two different rough surfaces: one, made with 250 µm glass beads and the 

other one of 500 µm glass beads, with respective size dispersions of 44 µm and 85 µm. A 

Scanning Electron Microscope (SEM) image is shown in Figure 1 to illustrate the surface 

topography created by the glued beads for the case of 250 µm. It is easy to see in some 

regions, 2 or 3 layers of beads due to the manufacturing method of the surface. This is also 

observed in the 500 µm surface. 

Concerning the free particles deposited on the surface, we use glass beads whose mean 

diameters are: (0.93 ± 0.02) mm, (1.98 ± 0.04) mm, (3.26 ± 0.09) mm and (3.98 ± 0.03) 

mm; and stainless steel ball bearings of 2, 3 and 4 mm. 

The plate is fixed to the drive arm of a mechanical oscillator and can vibrate with a selected 

frequency given by a wave generator connected to it. The mechanical oscillator has a drive 

arm that allows fixing on it the plate with the rough surface to be vibrated. The amplitude 

of oscillation of this arm is proportional to the signal (measured in volts) of the wave 

generator connected to the mechanical oscillator. The linear correspondence between 

voltage and amplitude is verified and calibrated carefully. To this end we make use of two 

different techniques. The first one consists in the tracing, with the help of a fine fiber pen, 

of the trajectory of the oscillating arm-plate system. The double check is achieved by 



recording the movement of the arm-plate system with a video camera Casio EXILIM EX-

ZR400. 

We also verify the dependence of the amplitude given by the generator on the different 

frequency ranges and that the sinusoidal shape of the signal does not change with time. For 

the range involved in the present experiments, constant amplitude can be provided, 

independently of the working frequency. 

Another important point is to know if the critical frequency depends on the rate of 

increment during the experimental run. Indeed, we detect a dependence on the frequency 

rate, so a controlled ramp is provided with a fixed rate equal to 0.63 rad/s2 in all the 

experiments.  

In the present experiments we use sinusoidal waves with a given well controlled amplitude, 

A, and frequency, ω. Figure 2 gives a sketch of the experimental set up. The values selected 

and measured for the amplitudes used in the experiments are: 0.73, 1.28, 1.91, 2.28, 2.58, 

2.87, 3.12, 3.47, 3.88 and 4.03 mm, with an error of ± 0.06 mm. The error in the different 

frequencies provided by the generator is of the order of 1 rad/s.  

Initially, ten spheres with a given diameter are deposited randomly over the surface. They 

are carefully separated to prevent possible contacts or hits among them or with the lateral 

edges which are transparent thin walls stuck around the disk to avoid the flow out of the 

free particles. 

The desired amplitude is selected and fixed in the wave generator (see (1) in Figure 2) and 

the platform is subjected to an oscillation starting from a frequency of 0.10 Hz 

(approximately 0.63 rad/s). Next, the frequency is increased in fixed steps at a rate of 0.10 

Hz/s. 



With the help of a magnifying glass, we check for the incipient movement of particles and 

record the critical frequency, ωc, at which at least half of the deposited spheres starts to 

move from their original positions. Movement is considered when a particle has a 

displacement of the order of its radius. This procedure is also recorded by the digital video 

camera referred above, at 140 fps, to complete the determination of ωc (see (5) and (6) in 

Figure 2). Once the critical frequency is reached, the experimental run ends, and the 

oscillator is turned off. 

A new value for the amplitude of oscillation is chosen and the spheres are redistributed 

over the surface. The frequency is set to 0.10 Hz and the excitation is started again with the 

same increasing rate. The critical frequency for the new amplitude value is registered in the 

same way as explained before. 

To avoid important humidity effects, experiments are always performed with a relative 

ambient humidity between 35% and 55%. This allows having the same capillary interaction 

between the spheres and the surface (Kohonena (2004); Rabinovich et al. (2002)). 

Finally, for a given surface and a given deposited sphere size and material, a set of 200 

different positions on the surface are inspected in order to average the results shown in the 

next section. 

 

 
2.2. Results and discussion 

 
In our experiments, we observe that positions of the beads which initiate their motion are 

randomly distributed on the surface. In Figure 3 we show the results obtained for the 

critical frequencies, ωc, needed to put into incipient movement at least 50% of the glass 



particles deposited on the vibrating surface as the amplitude of the excitation is increased. 

The error bars for the amplitude are indicated and those for the statistical error in the 

determination of the critical frequency are of the order of the symbol size. Part (a) of the 

figure corresponds to the 250 µm surface and part (b) to 500 µm. The different ratios 

between the size of the free spheres and the size of the beads belonging to the surface are 

indicated in each case. 

On the other hand, our results demonstrate to be practically independent of the size of the 

beads used to build the surface. This implies that the roughness of the surface created by 

the glued spheres is such that the characteristic length of it is not dictated by the size of the 

constituting beads, but rather by the geometrical arrangement of them with the glue. In 

other words, the topography of the surface created by the glued grains masks the influence 

of their own sizes. 

According to the definition of ωc, the set of points divides the upper region corresponding 

to the existence of movement of at least 50% of thespheres from the lower part with 

absence of movement or with incipient movement of less than 50% of the particles. 

The results for both surfaces and all ratios are quite similar. They can be described by an 

exponential decay in all cases, independently of the size ratio. So, as the amplitude of the 

oscillation increases, the critical frequency needed to initiate the particle’s movement 

decreases. 

In order to know whether the behavior is still the same for a different material, we perform 

a series of experiments with stainless steel spheres deposited on the same two rough 

surfaces. By following the same procedure explained earlier, we obtain the results shown in 

Figure 4. Comparing the two parts of the figure, it is clear that the behavior for both 



surfaces is practically the same, with a slight displacement of the data to higher frequencies 

for the smaller spheres. As indicated by the curves, the behavior can also be fitted by an 

exponential decay. It is necessary to note that experiments with the smaller 1mm stainless 

steel beads are not performed to avoid static charge effects. 

According to the results shown so far, a clear dependence on the excitation amplitude is 

experimented by the critical frequency needed for a given particle to start its motion. In the 

scheme that the system could behave like a lightly damped forced oscillator, it is expected 

that one natural resonance frequency will be present. Nevertheless, the exponential decay of 

the critical frequency as the vibration amplitude increases is very solid and, as we will see 

in the next section, the simple scheme of a forced oscillator has to be rethought to explain 

our present results (Ziskind, Fichman & Gutfinger (2000)). 

 

3. Theoretical approach 

 

3.1 Model of the results 

 

In this section, we explain, from a theoretical point of view, the possible physical basis 

leading to the experimental results presented above. Using a basic approach, we analyze the 

problem of a spherical particle on top of a vibrating bed. This system can be represented as 

a forced damped harmonic oscillator like the one sketched in Figure 5. 

As presented in the introduction, we assume that the key point is to consider that our 

system behaves like a harmonically excited oscillator with a spring representing the 

effective interactions between particle and surface. These interactions are due to the 

intermolecular forces and capillary forces, which lead us to assume that their effect is like 



an elastic bond (“spring”) between the particle and the surface, with stiffness constant k 

(Ziskind, Fichman & Gutfinger (2000)). 

In this way, the stiffness constant represents the effective bond seen by the excited 

particles. Here, it is important to clarify that the attractive part of the effective interaction 

force in our model could be attributed to the presence of van der Waals and capillary 

effects. Indeed, these forces are still important when compared with gravitational ones even 

in the case of particles with few millimeters size. Both forces increase with the radius of the 

particle and it has been calculated that their value are not negligible respect to the weight 

(Israelachvili (1991), Zhu et al. (2007)). For capillary forces, although the relative humidity 

values at which experiments are performed is not so high, it is enough to generate capillary 

bridges among the particles and the surface that have to be considered in the problem 

(Herminghaus (2005)). On the other hand, were these forces not present, the sole inertial 

force due to the external excitation would yield to a constant critical acceleration, which is 

not the case, as will be shown below. 

Like it is clearly discussed in Ziskind et al. (2000), the oscillatory motion of a particle on a 

surface may be caused by the mechanical vibrations of it and nonlinear effects can be 

present. The fact that the oscillation of a rough surface can cause a complex vibration 

movement of the particle deposited on it makes it necessary to consider a nonlinear 

behavior. In the case of a forced oscillator with a nonlinear restitution force (Pain, H.J. 

(1976)) it is calculated that, depending on the sign of the nonlinear term, the effective 

spring constant decreases with the deformation of the spring, which is propose in our model 

below.  

It is very difficult to measure the elastic properties of the bond between particles and 

surface but, our experimental results show (as plotted further below) that a non linear 



behavior is present. Given the complexity of resolving the equations of motion for such a 

nonlinear behavior (Wang L. (1999)), we propose an approximation by considering a 

simple linear harmonic damped oscillator where we introduce a correction on the 

dependence of the natural frequency on the oscillation amplitude (Ziskind, Fichman & 

Gutfinger (2000)). 

We assume an external harmonic force exerted on the particle through the spring by the 

vibrating bed with amplitude A and frequency ω/2π. Using standard oscillation analysis and 

with the help of the sketch in Figure 5, let figure out which is the amplitude that the particle 

will see when external excitation is turned on. 

To follow the theoretical model proposed here, one only has to remember the main features 

of a forced damped harmonic oscillator. Thus, the amplitude seen by the particle can be 

calculated following the standard resolution as: 
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In equation (1), ω0 and γ are the natural frequency of the system and the damping constant 

of the elastic bond between the particle and the surface, respectively. As known, ω0 will 

depend on the stiffness of the bond. 

In the present case, experiments are done by varying the frequency of the external 

excitation, so the amplitude of the force, F0, is not a constant but varies with Aω2, where A 

is the input amplitude of the oscillator, fixed at each experimental run. Thus, as the run 

goes on, the amplitude seen by the sphere is: 
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Using equation (2), the acceleration undergone by the particle can be calculated as 

𝐴𝐴∗(𝜔𝜔)𝜔𝜔2. When a different value for the amplitude A is selected (a new experimental run 

begins by increasing the frequency) new series of A*(ω) values are seen by the particle as 

the experiment goes on and, as a consequence, the velocity and the acceleration suffered by 

the particle change. 

To illustrate our point we apply the theoretical model to two of the experiments performed 

above. We consider glass spheres of 1mm deposited on the 250 µm and on the 500 µm 

glass beads surfaces. Figure 6 shows the forces undergone by the particle deposited on the 

oscillating surface for each value of the amplitude and calculated by using  𝐹𝐹∗ =

𝑚𝑚𝐴𝐴∗(ω)ω2. Note that in our present model, the curves will be the same for both types of 

surfaces. The mass of the sphere is 1.053 x 10-6 kg, by taking 2500 kg/m3 as the glass 

density. For a better visualization of the values we plot the results in a semi-log scale. The 

meaning of the horizontal lines (very close one to the other) is explained below.The ten 

curves correspond to the different amplitudes of excitation used in the experiments and they 

are enumerated in the legend. Besides, a damping constant of 200 s-1 is considered. This 

value will be (as seen below) of the order of the natural frequencies entering in equation 2, 

thus modeling a lightly damped harmonic oscillator.  In our checks, the model shows to be 

almost insensitive to the value of this constant starting at 100 s-1 and up to one order of 

magnitude. Only the range of oscillation frequencies involved in our experiments is 

displayed in the plots. 



Taking into account that some authors find that the stiffness of a spherical particle is not 

constant but increases with particle deformation (Ziskind, Fichman & Gutfinger (2000)), it 

is not unreasonable to think that, in our present scenario, k will depend on the amplitude of 

the oscillations. It is worth noting that it is very difficult to quantify the elastic properties of 

the bond between particle and surface. For that reason some assumptions and estimations 

are done for the values of ω0 used in the figures. 

In our present case, it is expected that particle deformation will be larger as the applied 

acceleration increases and, thus, according to Ziskind, Fichman & Gutfinger (2000), the 

stiffness k will increases. Experimentally, the critical acceleration decreases as the input 

amplitude A increases (see below). Consequently, k decreases for increasing values of the 

input A. Given that the mass of the particles is a constant, a decrease in k means a decrease 

in the natural frequency ω0 of the system. Taken into account that an exponential decay is 

evident among the critical frequency-amplitude pairs found in our experiments, we 

propose, as a reasonable trend, an exponential decay of the natural frequency with the 

amplitude A. This idea is also in coincidence with the expected decaying behavior of 

vibrating frequencies as the restoring force becomes non-linear (Kovacic (2011)). 

Considering the range of values obtained for the experimental critical frequencies and their 

relation with the different input amplitudes, we propose that the natural frequencies ω0 

obey the decaying behavior with A displayed in Figure 7. It is worthy to say that these are 

the values for ω0 which are used to plot the curves in Figure 6. 

Now, consider the force necessary to overcome the interaction forces holding a particle 

attached to the surface (spring breaking). The horizontal lines in Figure 6 represent this 

force, assuming that its value is constant for a given particle size. Although we do not know 



this precise value, we can say that its magnitude is of the order of the nano-Newtons for 

micrometric particles on flat surfaces (Ripperger & Hein (2005)). Again, taking into 

account the range of values for ωc found in our experiments, we are only able to estimate 

detaching forces of 267 nN for 250 µm and 259 nN for 500 µm surfaces. This rough 

estimation seems reasonable if one thinks that, in our present case, we deal with 1mm 

particles on surfaces where the attaching forces are expected to decrease because of the 

presence of roughness. We will discuss these values in the next section below. 

The successive intersections of the horizontal lines with the different curves in Figure 6 

give the critical frequencies at which incipient movement of the particles is expected at a 

given amplitude of excitation. The values obtained at the intersections are plotted, 

respectively, in each part of Figure 8, along with the corresponding experimental results 

evaluated from the data in Figure 3(a) and (b). The agreement is quite good. 

In the same way, taking the different values for ωc obtained from the intersections, one can 

calculate the maximum critical acceleration, 𝑎𝑎𝑐𝑐 = 𝐴𝐴𝜔𝜔𝑐𝑐2 , at which the vibrating plate is 

subjected when 50% of particle movement is starting as a function of the amplitude. The 

results are respectively presented for both surfaces in Figure 9, where the comparison with 

experimental data is also shown. Here again, the agreement is good and we can appreciate 

the above mentioned decreasing trend of ω0 as the amplitude increases. 

 

3.2 Discussion 

The theoretical approach developed here allows the plotting of the force seen by the 

moving beads as the external frequency increases, for different amplitudes. Given that in all 

the cases the moving particle is the same, the force calculus for both rough surfaces yields 



the same curves shown in Figure 6. On the other hand, the cohesion force (adhesion plus 

eventual capillary bridges) experimented by the particles when they try to detach from the 

surface (spring breaking) is different. The two values proposed (267 nN and 259 nN) for 

each case are very close. Such equal values are evidencing the similar behavior found when 

comparing Figures 3 (a) and (b). They are deduced by drawing horizontal lines in Figure 6 

that take into account the experimental range of values within which ωc varies with A. In 

other words, by taking into account the frequency range, the intersections of the horizontal 

line with each amplitude curve give the correct values of the experimental critical 

frequencies. We have to say that these force values in Figure 6 are just rough estimations 

obtained from the model. They represent the force needed to destabilize the particle and are 

inside the wide range of adhesion forces estimations found in the literature (Zhu et al. 

(2007), Ripperger & Hein (2005), Jones et al. (2002)). Evidently, if one could measure 

those force values, the inverse way could be performed to predict the critical frequency-

amplitude ranges originally measured in our experiments. 

In this way, one could conclude that the interaction of the beads with both surfaces is quite 

similar and this is likely due to the way that the surfaces are constructed. The high degree 

of disorder present in the space distribution of the glued beads on the surface is more 

important that their size, thus, the moving particles interact in a similar way with both 

surfaces. 

It is interesting to mention that in experiments for ideally rigid particles on a rigid plane 

which is vibrated sinusoidally, the so called Froude criterion is suitable to characterize 

critical detachment frequencies when only inertial forces are present. As expressed above, 

adhesion forces have to be taken into account. For that reason, the experimental data cannot 



be represented by that criterion and one would have to modify that criterion to embody both 

the elastic and adhesion properties of the particle-plate system (Eshuis et al. (2007), Renard 

et al. (2001)). 

The model is able to describe quite well the experimental dependence of the critical 

frequencies on the input amplitude. Only the idea of a harmonic oscillator resonating at the 

natural frequency corresponding to the particle material is not enough, in coincidence with 

the ideas proposed by Dabros, Warszynsky & van de Ven (1994) and by Ziskind, Fichman 

& Gutfinger (2000). Although the exponential decrease of the critical frequency ωc with the 

amplitude A is not explicitly derived from the theoretical calculus, it can be appropriately 

deduced by the present model as soon as an appropriate fitting of the spring stiffness ω0 is 

implemented in the model.   

Finally, the decrease of the acceleration as A increases is an indication that a non-linear 

behavior of the natural frequency of the system could be happening. Indeed, the assumption 

for the dependence of 𝜔𝜔0on the amplitude, as displayed by Figure 7, is necessary to 

explain, through this simplified model, the results obtained experimentally. 

 

4. Simulation Model 

 

In this Section we present the outline of our simulation model to show which are the main 

forces contributing to a good description of the problem and validating that the inclusion of 

elastic, adhesion and capillary forces are enough to explain, from a numerical approach, the 

experimental behavior found. 

 



4.1 Numerical Setup 

We use a classical Discrete Element Method (DEM) model to represent the dynamical 

interaction between the moving particles and the rough surface. The present model follows 

the two-dimensional formulation of Savage (1993) and the three-dimensional extension 

used by Oger, Ippolito & Vidales (2007). In order to make the reading clearer all the 

equations are regrouped in the Appendix. 

The particles are modeled as spheres using a “soft-particle" approach (equations A1toA3), 

where each sphere can have multiple contacts that can persist for extended durations 

(typically during 50 time steps). Normal and tangential forces can develop at the contact 

between two spheres.When only compressive forces are allowed, the simulations represent 

dry, non-cohesive particle assemblies. The presence of tensile forces at the contacts models 

cohesive particles. In this case, short range interactions can occur up to the breakage of the 

adhesive forces or the breaking of a liquid bridge. No long range interactions are present in 

this model. In this way, bonds between contacting spheres can be introduced at the initial 

stage of the packing or during the oscillation process, thus mimicking an assembly of 

particles with tensile strengths. 

In our model, a tensile (negative) value is possible up to a limiting tensile strength defined 

for the bond, after which the bond breaks. These bonds can arise, as expected, due to the 

presence of van der Waals and/or capillary forces (see equations A4 and A5). When no 

cohesive forces are present, a contact takes place only when two spheres overlap, and the 

normal and tangential forces increase as the centers of the particles approach each other. 

The tangential force has also a critical tensile strength below which it is modeled as a 

viscoelastic one and, above it, the bond breaks and the tangential force follows the Mohr 

Coulomb law. 



In order to simulate local contact effects and non-perfect spherical particles, a rolling 

resistance parameter has been introduced recently (Ai et al. (2011)). This parameter 

represents the effects of the shape of the particle on its rolling ability and the possible 

resistance due to plastic deformation around the contact and/or possible viscous hysteresis. 

We consider this parameter in our model and its value is taken between the range 0 (no 

effect) to 0.4, which is the maximum value that the slope angle can attain when the rolling 

resistance torque equals the one produced by gravity acting on the particle.  

In order to simulate the experimental set up, we first create a rough surface of glued spheres 

with diameter 500 µm. We randomly deposit up to three layers of these spheres on the 

surface. In all cases, they are sitting on a stable position under gravity with one contact in 

the case of the first layer, or up to three contacts for the two upper layers. Thereafter, all the 

spheres are assumed as fixed in their positions and motionless respect to the vibrating plate. 

They only interact with the upper moving spheres. This glued layer simplifies the global 

interaction calculation, as only sphere contacts are present in the simulation, i.e., no flat 

wall-sphere interactions are possible. 

Once the rough surface is ready, 200 spheres with 1 mm diameter are randomly deposited 

on it to consider a large number of different configurations. To earn computing time, we 

prevent the particles to see each other, i.e., no billiard balls effects are present during all the 

simulation process. After the moving spheres attained equilibrium positions, the surface 

constituted by the glued spheres is put under vertical oscillation at a given amplitude and 

frequency by moving the center of these spheres. Due to the interaction forces, this process 

will consequently generate the oscillation of all the spheres. It is worthy to mention here 

that this oscillation will limit the choice of the time step for simulations. Indeed, besides the 

classical soft DEM rule of using the length of the time steps for the numerical integration as 



1/50 of the duration of the collisions, we have to take into account that the displacement 

provoking the oscillation of the glued spheres will generate an overlap with the upper 

spheres that has also to follow that soft DEM rule. 

Since increasing the frequency step by step like in the experiments would consume a very 

long computer time, we run the program a few times for each frequency-amplitude pair and 

look for spheres in movement after a given time. Thus, we can easily get the 50% of 

moving spheres threshold with a good statistic. The set of input parameters used in the 

simulation are given in Table 1. 

 

4.2 Results and Discussion 

In Figure 10 we show the simulation results for the critical pair frequency-amplitude for the 

case of 500 µm surface and glass beads with diameter 1 mm. The corresponding 

experimental and theoretical results are shown for comparison. The exponential decay is 

recovered again in simulations and the agreement with experiments is reasonably good. The 

lines in the figure indicate fitting exponential curves. 

We understand that the main reason for explaining the difference in behavior between 

simulations and experiments has to do with the roughness of the surface. In simulations, the 

number of layers and the mean distance between spheres in these upper layers do not have 

the topological complexity of the surface generated through real glued spheres. In this way, 

the ease of the moving beads to overcome the barrier to jump from a hole is greater for the 

case of simulations than for experiments. This is evident especially for lower amplitudes 

where the critical frequencies observed in simulations are respectively lower. We also try 

other ratios and confirm this behavior. This will be the subject of further research. 

 



5. Conclusion 

 

In this work, we aim to determine the critical moment when particles deposited on a 

vibrating surface are put into movement. Although the experimental set up is rather simple, 

the explanation of the exponential decaying relation found for the critical frequency-

amplitude pairs is not straightforward. 

As discussed in previous works (Ziskind, Fichman & Gutfinger (2000)), our experiments 

show that the frequencies are quite lower than those related to the elastic properties of the 

particles material (6x106 rad/s or higher). These frequencies follow an exponential decay 

with the amplitude of the sinusoidal external excitation. 

Following the idea that particles behave like a forced damped oscillator, we develop a 

simple resonant spring model where the key point stands on the assumption that the 

stiffness of the vibrating spring encompasses all the moving particle interactions with the 

surface and it results to be quite lower than the one associated to glass stiffness alone. 

Besides, it is necessary to assume that the natural frequency of that spring depends on the 

particle deformation and, as a consequence, on the acceleration amplitude of the vibrations. 

This is in line with other authors’ arguments, where the stiffness constants of oscillators are 

analyzed as a function of the external excitation for both linear and non-linear restoring 

forces (Ziskind, Fichman & Gutfinger (2000); Kovacic (2011)). The idea of a harmonic 

oscillator resonating at the natural frequency corresponding to the particle material, alone, 

is not enough. In this way, the theoretical model proposed here describes the experimental 

behavior quite closely, explaining the exponential decay obtained for the critical 

frequencies, although it is not explicitly derived from the theoretical calculus. 



Contrary to the theoretical model, where the elastic constant can be thought of as the 

resultant of all the interactions of the particle with the surface, in the simulation model, the 

lack of a real topological description of the surface roughness is responsible that the critical 

frequencies result lower than expected, especially for lower amplitudes where space 

barriers are more difficult for the moving particles to overcome. In this sense, a deeper 

study of the critical frequency-amplitude pairs for incipient movement of particles on a 

highly controlled monolayer of glued spheres is in course.  

 

Appendix 

 

Spring-dashpot model for particle contact 

The ith particle is characterized by its radius ri, the position of its center (xi ,yi) and the 

angular rotation θi around its center. Interparticle forces exist only when two spheres 

overlap or when the cohesive forces keep them in close contact, and the normal and 

tangential contact forces increase as the centers of the particles approach each other. 

The normal force Fn at the contact is modeled as viscoelastic. It consists of an elastic (a 

linear spring) and a viscous damping (a linear dashpot) contributions, described as follows: 

 

Compression:  𝐹𝐹𝑛𝑛 = 𝐾𝐾𝑛𝑛𝛿𝛿 − 𝑏𝑏𝑛𝑛𝑣𝑣𝑛𝑛   for 𝛿𝛿 = �𝜎𝜎 − �𝒓𝒓𝑖𝑖 − 𝒓𝒓𝑗𝑗�� > 0 

Tension:  𝐹𝐹𝑛𝑛 = 0    for 𝛿𝛿 < 0                                                                                             (A1) 

 

where Kn is the spring constant for normal forces, δ is the relative normal displacement 

between the centers of the two particles in contact, σ is the distance between their two 



centers, ri and rj are the two radii of the particles, vn is the relative normal velocity and bn is 

the dashpot constant for normal forces. 

The force in the tangential direction is also modeled as a viscoelastic one where a linear 

spring and a linear dashpot are used as follows: 

                                                      𝐹𝐹𝑡𝑡 = 𝐾𝐾𝑡𝑡𝛿𝛿𝑡𝑡 − 𝑏𝑏𝑡𝑡𝑣𝑣𝑡𝑡                                                         (A2) 

where Kt is the spring constant for tangential forces, δt is the relative lateral displacement 

during all the duration of the contact, vt is the relative tangential velocity, and bt is the 

dashpot constant for tangential forces. Ft is also limited to a maximum value which is 

chosen according to a Coulomb friction law where slipping can occur: 

 

                                                           𝐹𝐹𝑡𝑡 = 𝜇𝜇𝑖𝑖𝐹𝐹𝑛𝑛                                                                (A3) 

 

where µi is the coefficient of friction. The tangential force acts in a direction opposite to 

that of the relative tangential velocity vt. 

The definition of the two spring constants and the two dashpot terms can be directly related 

to the classical mechanical parameters describing a material, i.e., Young's modulus, Poisson 

ratio and restitution coefficient (see, for example, Mishra & Murty (2001)). 

In the present model, we can introduce bonds between spheres that are in contact depending 

of the surrounding water content. The decrease of the cohesive force (Fcap) during the 

pulling apart process of two adjacent spheres is modeled using the equation proposed by 

Charlaix & Crassous (2005): 

                                                    𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐 = 2 𝜋𝜋 𝛾𝛾𝑠𝑠𝑠𝑠 𝑅𝑅 cos(𝜃𝜃)                    (A4) 



where cos(θ), defined from the wetting angle, is around 0.84 for water on glass, γsl is the 

liquid surface tension and R is the effective radius of the two interacting particles. 

Finally, the van der Waals force between particles, FVW, is modeled through an always 

attractive force as (Israelachvili (1991)): 

 

                                                         𝐹𝐹𝑉𝑉𝑉𝑉 = 𝐴𝐴𝐻𝐻 𝑅𝑅
6 𝐷𝐷2

                                                                (A5) 

 

where AH is the Hamaker coefficient, R is, as in (A4), the effective radius and D is the 

distance between the surfaces. 
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Table 

Table 1: Input parameters for the 500 µm surface and 1 mm moving glass beads at 
70% of relative humidity 

Parameter Value 
Density for glass 2500 kg/m3 

Friction coefficient, µi 0.5 
Restitution coefficient 0.8 
Stiffness, Kn 106 N/m 
Stiffness, Kt 1.6x106 N/m 
Dashpot constant,bn 0.11kg/s 
Dashpot constant,bt 0.4bn 
Rolling resistance 0.3 
Surface tension, γsl 72 mN/m 
Hamaker coefficient, AH 6.5 x 10-20 J 

 

Figure captions 



 

Figure 1: SEM image from the surface of 250 µm glass beads. 

 

 



Figure 2: Sketch of the experimental set up used to measure the critical amplitude-

frequency pairs: Sine wave generator (1), Mechanical wave driver (2), Rough surface(3), 

Loupe (4), Digital camera (5), Computer (6). 

 

Figure 3: Critical frequency as a function of the vibration amplitude for glass beads on (a) 

250 µm and (b) 500µm glass surface. The size ratios indicated correspond to the ratio 



between the diameter of the free spheres and the diameter of the beads belonging to the 

surface. The error bars are indicated. The curves correspond to exponential fits. 

 

 

Figure 4: Critical frequency as a function of the vibration amplitude for stainless steel 

beads on (a) 250 µm and (b) 500 µm glass surface. The size ratios indicated correspond to 



the ratio between the diameter of the free spheres and the diameter of the beads belonging 

to the surface. In both cases, the error bars are indicated and, as before, the curves are 

exponential fits. 

 

Figure 5: Sketch of the forced damped harmonic oscillator representing our model system. 

 

Figure 6: Calculated forces undergone by the particle deposited on the oscillating surface 

and for different amplitudes, which (from left to right) are: 0.73, 1.28, 1.91, 2.28, 2.58, 

2.87, 3.12, 3.47, 3.88, 4.03 millimeters. Note the semi-log scale. The horizontal lines 

correspond to the detaching forces for each surface: 250 µm (upper) and 500 µm (lower). 



 

Figure 7: Exponential decay assumption for the dependence of the natural frequency, ω0, 

with the amplitude, A. The points correspond to the values used in the theoretical 

calculations for both types of surfaces. 



 

Figure 8:Comparison between the experimental and theoretical values for the critical 

frequency-amplitude pairs for incipient movement of a 1 mm glass sphere over: (a) 250 µm 

and (b) 500 µm. 



 

Figure 9: Comparison between the experimental and theoretical values for the maximum 

critical acceleration at which the vibrating plate is subjected when particle movement is 

starting for a 1 mm glass sphere over: (a) 250 µm and (b) 500 µm. 



 

Figure 10: Comparison with simulation results for critical frequency-amplitude pairs for 

the case of a surface of 500 µm glass beads and 1 mm moving particles. 


