B. E. Logan and K. Rabaey, Conversion of Wastes into Bioelectricity and Chemicals by Using Microbial Electrochemical Technologies, Science, vol.337, pp.686-690, 2012.

A. Sydow, T. Krieg, F. Mayer, J. Schrader, and D. Holtmann, Electroactive bacteria?molecular mechanisms and genetic tools, Appl. Microbiol. Biotechnol, vol.98, pp.8481-8495, 2014.

A. Kumar, L. H. Hsu, .. Kavanagh, P. Barriere, F. Lens et al.,

L. Lapinsonniere, L. Lienhard, V. , J. H. Schroder, U. Jiang et al., The ins and outs of microorganism?electrode electron transfer reactions, Nat. Rev. Chem, vol.1, issue.0024, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01542755

H. Smida, E. Lebegue, J. Bergamini, F. Barriere, and C. Lagrost, Reductive electrografting of in situ produced diazopyridinium cations: Tailoring the interface between carbon electrodes and electroactive bacterial films, Bioelectrochemistry, vol.120, pp.157-165, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01695553

H. Smida, T. Flinois, E. Lebegue, C. Lagrost, and F. Barriere, Microbial Fuel Cells?Wastewater Utilization, In Encyclopedia of Interfacial Chemistry

K. Wandelt and . Ed, , pp.328-336, 2018.

A. Alves, H. K. Ly, P. Hildebrandt, R. O. Louro, and D. Millo, Nature of the Surface-Exposed Cytochrome?Electrode Interactions in Electroactive Biofilms of Desulfuromonas acetoxidans, J. Phys. Chem. B, vol.119, pp.7968-7974, 2015.

M. Picot, L. Lapinsonniere, M. Rothballer, and F. Barriere, Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output, Biosens. Bioelectron, vol.28, pp.181-188, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01151352

E. Blanchet, S. Pe?astaings, B. Erable, C. Roques, and A. Bergel, Protons accumulation during anodic phase turned to advantage for oxygen reduction during cathodic phase in reversible bioelectrodes, Bioresour. Technol, vol.173, pp.224-230, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01149655

C. I. Torres, A. K. Marcus, and B. E. Rittmann, Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria, Biotechnol. Bioeng, vol.100, pp.872-881, 2008.

F. Harnisch and U. Schroder, Selectivity versus Mobility: Separation of Anode and Cathode in Microbial Bioelectrochemical Systems, ChemSusChem, vol.2, pp.921-926, 2009.

J. T. Babauta, H. D. Nguyen, T. D. Harrington, and R. Renslow, Beyenal, H. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer, Biotechnol. Bioeng, vol.109, pp.2651-2662, 2012.

A. Okamoto, T. Yoshihide, K. Shafeer, and H. Kazuhito, Proton Transport in the Outer-Membrane Flavocytochrome Complex Limits the Rate of Extracellular Electron Transport, Angew. Chem., Int, vol.56, pp.9082-9086, 2017.

R. J. El-khouri, D. A. Bricarello, E. B. Watkins, C. Y. Kim, C. E. Miller et al., Responsive Polymer Cushions for Probing Membrane Environment Interactions, Nano Lett, 2011.

G. Jurmann, D. J. Schiffrin, and K. Tammeveski, The pHdependence of oxygen reduction on quinone-modified glassy carbon electrodes, Electrochim. Acta, vol.53, pp.390-399, 2007.

J. Vacek, M. Zatloukalova, and D. Novak, Electrochemistry of membrane proteins and protein?lipid assemblies, Curr. Opin. Electrochem, 2018.

D. Be?anger and J. Pinson, Electrografting: a powerful method for surface modification, Chem. Soc. Rev, vol.40, pp.3995-4048, 2011.

M. Delamar, R. Hitmi, J. Pinson, and J. M. Saveant, Covalent Modification of Carbon Surfaces by Grafting of Functionalized Aryl ACS Omega Article

, ACS Omega, vol.3, pp.9035-9042, 2018.

, Radicals Produced from Electrochemical Reduction of Diazonium Salts, J. Am. Chem. Soc, vol.114, pp.5883-5884, 1992.

P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R. Hitmi et al., Covalent modification of carbon surfaces by aryl radicals generated from the electrochemical reduction of diazonium salts, J. Am. Chem. Soc, vol.119, 1997.

C. Cougnon, F. Gohier, D. Belanger, and J. Mauzeroll, Situ Formation of Diazonium Salts from Nitro Precursors for Scanning Electrochemical Microscopy Patterning of Surfaces, Angew. Chem., Int. Ed, vol.48, pp.4006-4008, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00417304

C. Cougnon, N. H. Nguyen, S. Dabos-seignon, J. Mauzeroll, and D. Be?anger, Carbon surface derivatization by electrochemical reduction of a diazonium salt in situ produced from the nitro precursor, J. Electroanal. Chem, pp.661-674, 2011.

K. F. Blurton, An electrochemical investigation of graphite surfaces, Electrochim. Acta, vol.18, pp.869-875, 1973.

S. Baranton and D. Belanger, In situ generation of diazonium cations in organic electrolyte for electrochemical modification of electrode surface, Electrochim. Acta, vol.53, pp.6961-6967, 2008.

N. H. Nguyen, C. Esnault, F. Gohier, D. Belanger, and C. Cougnon, Electrochemistry and Reactivity of Surface-Confined Catechol Groups Derived from Diazonium Reduction. Bias-Assisted Michael Addition at the Solid/Liquid Interface, Langmuir, vol.25, pp.3504-3508, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00417296

E. Lebegue, H. Smida, T. Flinois, V. Vie, C. Lagrost et al., An optimal surface concentration of pure cardiolipin deposited onto glassy carbon electrode promoting the direct electron transfer of cytochrome-c, J. Electroanal. Chem, vol.808, pp.286-292, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01695488

H. Park, J. Park, and Y. Shim, Electrochemical and in situ UV? visible spectroscopic behavior of cytochrome c at a cardiolipin-modified electrode, J. Electroanal. Chem, vol.514, pp.67-74, 2001.

J. Wang, M. Li, Z. Shi, N. Li, and Z. Gu, Direct Electrochemistry of Cytochrome c at a Glassy Carbon Electrode Modified with Single-Wall Carbon Nanotubes, Anal. Chem, vol.74, 1993.

A. Perhirin, E. Kraffe, Y. Marty, F. Quentel, P. Elies et al., Electrochemistry of cytochrome c immobilized on cardiolipin-modified electrodes: A probe for protein?lipid interactions, Biochim. Biophys. Acta, 1830.
URL : https://hal.archives-ouvertes.fr/hal-01130700

Y. Huang, L. Liu, C. Shi, J. Huang, and G. Li, Electrochemical analysis of the effect of Ca 2+ on cardiolipin?cytochrome c interaction

, Biochim. Biophys. Acta, 1760.

Z. Salamon and G. Tollin, Interaction of Horse Heart Cytochrome c with Lipid Bilayer Membranes: Effects on Redox Potentials, J. Bioenerg. Biomembr, vol.29, pp.211-221, 1997.

E. S. O'brien, N. V. Nucci, B. Fuglestad, C. Tommos, and A. J. Wand, Defining the Apoptotic Trigger: The interaction of cytochrome c and cardiolipin, J. Biol. Chem, vol.290, pp.30879-30887, 2015.

F. Sinibaldi, B. D. Howes, E. Droghetti, F. Polticelli, M. C. Piro et al., Role of Lysines in Cytochrome c?Cardiolipin Interaction, Biochemistry, vol.52, pp.4578-4588, 2013.

M. J. Tarlov and E. F. Bowden, Electron-transfer reaction of cytochrome c adsorbed on carboxylic acid terminated alkanethiol monolayer electrodes, J. Am. Chem. Soc, vol.113, pp.1847-1849, 1991.

K. Lee, M. Won, H. Noh, and Y. Shim, Triggering the redox reaction of cytochrome c on a biomimetic layer and elimination of interferences for NADH detection, Biomaterials, pp.31-7827, 2010.

L. Liu, L. Zeng, L. Wu, and X. Jiang, Label-Free Surface-Enhanced Infrared Spectroelectrochemistry Studies the Interaction of Cytochrome c with Cardiolipin-Containing Membranes, J. Phys. Chem. C, vol.119, pp.3990-3999, 2015.

H. Yue, D. H. Waldeck, J. Petrovic, and R. A. Clark, The Effect of Ionic Strength on the Electron-Transfer Rate of Surface Immobilized Cytochrome c, J. Phys. Chem. B, vol.110, pp.5062-5072, 2006.

W. R. Hagen, Direct electron transfer of redox proteins at the bare glassy carbon electrode, Eur. J. Biochem, vol.182, pp.523-530, 1989.

G. Battistuzzi, M. Borsari, L. Loschi, A. Martinelli, and M. Sola, Thermodynamics of the Alkaline Transition of Cytochrome c, Biochemistry, vol.38, pp.7900-7907, 1999.

C. Le?er, S. J. Elliott, K. R. Hoke, L. J. Jeuken, A. K. Jones et al., Enzyme Electrokinetics: Using Protein Film Voltammetry To Investigate Redox Enzymes and Their Mechanisms, vol.42, pp.8653-8662, 2003.

V. Fourmond, QSoas: A Versatile Software for Data Analysis, Anal. Chem, vol.88, pp.5050-5052, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01414965

C. M. Paquete, B. M. Fonseca, D. R. Cruz, T. M. Pereira, I. Pacheco et al., Exploring the molecular mechanisms of electron shuttling across the microbe/metal space, Front. Microbiol, vol.5, issue.318, 2014.

, ACS Omega Article

, ACS Omega, vol.3, pp.9035-9042, 2018.