E. Szegezdi, S. E. Logue, A. M. Gorman, and A. Samali, Mediators of endoplasmic reticulum stress-induced apoptosis, EMBO Rep, vol.7, pp.880-885, 2006.

A. Korennykh and P. Walter, Structural basis of the unfolded protein response, Annu. Rev. Cell Dev. Biol, vol.28, pp.251-277, 2012.

H. Yoshida, T. Matsui, A. Yamamoto, T. Okada, and K. Mori, XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor, Cell, vol.107, pp.881-891, 2001.

Y. Lu, F. X. Liang, and X. Wang, A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB, Mol. Cell, vol.55, pp.758-770, 2014.

A. H. Lee, N. N. Iwakoshi, and L. H. Glimcher, XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response, Mol. Cell Biol, vol.23, pp.7448-7459, 2003.

F. Martinon and L. H. Glimcher, Regulation of innate immunity by signaling pathways emerging from the endoplasmic reticulum, Curr. Opin. Immunol, vol.23, pp.35-40, 2011.

J. Hollien, Regulated Ire1-dependent decay of messenger RNAs in mammalian cells, J. Cell Biol, vol.186, pp.323-331, 2009.

D. Han, IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates, Cell, vol.138, pp.562-575, 2009.

J. P. Upton, IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2, Science, vol.338, pp.818-822, 2012.

X. Chen, XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway, Nature, vol.508, pp.103-107, 2014.

J. Ming, A novel chemical, STF-083010, reverses tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/XBP1, Oncotarget, vol.6, pp.40692-40703, 2015.

X. Sheng, Divergent androgen regulation of unfolded protein response pathways drives prostate cancer, EMBO Mol. Med, vol.7, pp.788-801, 2015.

W. Chien, Selective inhibition of unfolded protein response induces apoptosis in pancreatic cancer cells, Oncotarget, vol.5, pp.4881-4894, 2014.

K. Volkmann, Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease, J. Biol. Chem, vol.286, pp.12743-12755, 2011.

I. Papandreou, Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma, Blood, vol.117, pp.1311-1314, 2011.

B. C. Cross, The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule, Proc. Natl Acad. Sci. USA, vol.109, pp.869-878, 2012.

M. Sanches, Structure and mechanism of action of the hydroxy-arylaldehyde class of IRE1 endoribonuclease inhibitors, Nat. Commun, vol.5, p.4202, 2014.

N. E. Bhola, TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer, J. Clin. Invest, vol.123, pp.1348-1358, 2013.

D. Samanta, D. M. Gilkes, P. Chaturvedi, L. Xiang, and G. L. Semenza, Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells, Proc. Natl Acad. Sci. USA, vol.111, pp.5429-5438, 2014.

J. S. Parker, Supervised risk predictor of breast cancer based on intrinsic subtypes, J. Clin. Oncol, vol.27, pp.1160-1167, 2009.

A. L. Huber, p58(IPK)-mediated attenuation of the proapoptotic PERK-CHOP pathway allows malignant progression upon low glucose, Mol. Cell, vol.49, pp.1049-1059, 2013.

B. Drogat, IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo, Cancer Res, vol.67, pp.6700-6707, 2007.

G. Auf, Inositol-requiring enzyme 1alpha is a key regulator of angiogenesis and invasion in malignant glioma, Proc. Natl Acad. Sci. USA, vol.107, pp.15553-15558, 2010.

F. Martinon, X. Chen, A. H. Lee, and L. H. Glimcher, TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages, Nat. Immunol, vol.11, pp.411-418, 2010.

C. Chen and X. Zhang, IRE1alpha-XBP1 pathway promotes melanoma progression by regulating IL-6/STAT3 signaling, J. Transl. Med, vol.15, p.42, 2017.

Z. C. Hartman, Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8, Cancer Res, vol.73, pp.3470-3480, 2013.

P. Sansone, IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland, J. Clin. Invest, vol.117, pp.3988-4002, 2007.

S. Acharyya, A CXCL1 paracrine network links cancer chemoresistance and metastasis, Cell, vol.150, pp.165-178, 2012.

A. R. Green, V. L. Green, M. C. White, and V. Speirs, Expression of cytokine messenger RNA in normal and neoplastic human breast tissue: identification of interleukin-8 as a potential regulatory factor in breast tumours, Int. J. Cancer, vol.72, pp.937-941, 1997.

H. Knupfer and R. Preiss, Significance of interleukin-6 (IL-6) in breast cancer (review), Breast Cancer Res. Treat, vol.102, pp.129-135, 2007.

C. Chavey, Oestrogen receptor negative breast cancers exhibit high cytokine content, Breast Cancer Res, vol.9, p.15, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00143810

T. Bachelot, Prognostic value of serum levels of interleukin 6 and of serum and plasma levels of vascular endothelial growth factor in hormone-refractory metastatic breast cancer patients, Br. J. Cancer, vol.88, pp.1721-1726, 2003.

J. K. Morales, M. Kmieciak, K. L. Knutson, H. D. Bear, and M. H. Manjili, GM-CSF is one of the main breast tumor-derived soluble factors involved in the differentiation of CD11b-Gr1-bone marrow progenitor cells into myeloidderived suppressor cells, Breast Cancer Res. Treat, vol.123, pp.39-49, 2010.

S. Lhomond, Dual IRE1 RNase functions dictate glioblastoma development, EMBO Mol. Med, vol.10, p.7929, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01777737

W. D. Foulkes, I. E. Smith, and J. S. Reis-filho, Triple-negative breast cancer, N. Engl. J. Med, vol.363, pp.1938-1948, 2010.

M. Al-hajj, M. S. Wicha, A. Benito-hernandez, S. J. Morrison, and M. F. Clarke, Prospective identification of tumorigenic breast cancer cells, Proc. Natl Acad. Sci. USA, vol.100, pp.3983-3988, 2003.

X. Li, Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy, J. Natl Cancer Inst, vol.100, pp.672-679, 2008.

C. J. Creighton, Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features, Proc. Natl Acad. Sci. USA, vol.106, pp.13820-13825, 2009.

C. Ginestier, CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts, J. Clin. Invest, vol.120, pp.485-497, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01431952

N. Zhao, Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer, J. Clin. Invest, vol.128, pp.1283-1299, 2018.

Z. Dezs?, Gene expression profiling reveals epithelial mesenchymal transition (EMT) genes can selectively differentiate eribulin sensitive breast cancer cells, PLoS ONE, vol.9, p.106131, 2014.

D. Koboldt, Comprehensive molecular portraits of human breast tumours, Nature, vol.490, pp.61-70, 2012.

O. Pluquet, Post-transcriptional regulation of PER1 underlies the oncogenic function of IRE?, Cancer Res, vol.73, pp.4732-4743, 2013.

F. Varghese, A. B. Bukhari, R. Malhotra, and A. De, IHC profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples, PLoS ONE, vol.9, p.96801, 2014.

P. L. , F. G. , B. L. , and J. , provided access to MKC8866 and critical feedback on the study. R.J. contributed to initiation of the study and helped secure funding. A.M.G. provided critical feedback on the study and contributed to preparation of manuscript and revisions. S.E.L. wrote the manuscript and contributed to study direction. A.S. conceived the study, provided critical feedback, Fig. 1c. A.O. helped with analysis of data associated with Fig. 3b