B. Biterge and R. Schneider, Histone variants: key players of chromatin, Cell and Tissue Research, vol.356, pp.457-466, 2014.

M. Buschbeck and S. B. Hake, Variants of core histones and their roles in cell fate decisions, development and cancer, Nature Reviews Molecular Cell Biology, pp.1-16, 2017.
DOI : 10.1038/nrm.2016.166

M. Posavec, G. Timinszky, and M. Buschbeck, Macro domains as metabolite sensors on chromatin, Cell Mol Life Sci, vol.70, pp.1509-1524, 2013.
DOI : 10.1007/s00018-013-1294-4

C. Rivera-casas, R. Gonzalez-romero, M. S. Cheema, J. Ausió, and J. M. Eirin-lópez, The characterization of macroH2A beyond vertebrates supports an ancestral origin and conserved role for histone variants in chromatin, epigenetics, vol.11, pp.415-425, 2016.

D. Corujo and M. Buschbeck, Post-Translational Modifications of H2A Histone Variants and Their Role in Cancer, Cancers, vol.10, p.59, 2018.
DOI : 10.3390/cancers10030059

URL : http://www.mdpi.com/2072-6694/10/3/59/pdf

J. C. Sporn, G. Kustatscher, T. Hothorn, M. Collado, M. Serrano et al., Histone macroH2A isoforms predict the risk of lung cancer recurrence, Oncogene, vol.28, pp.3423-3428, 2009.
DOI : 10.1038/onc.2009.26

URL : http://www.nature.com/onc/journal/v28/n38/pdf/onc200926a.pdf

A. Kapoor, M. S. Goldberg, L. K. Cumberland, K. Ratnakumar, M. F. Segura et al., The histone variant macroH2A suppresses melanoma progression through regulation of CDK8, Nature, vol.468, pp.1105-1109, 2010.

B. Nashun, M. Yukawa, H. Liu, T. Akiyama, and F. Aoki, Changes in the nuclear deposition of histone H2A variants during pre-implantation development in mice, Development, vol.137, pp.3785-3794, 2010.

C. Creppe, P. Janich, N. Cantarino, M. Noguera, V. Valero et al., MacroH2A1 Regulates the Balance between Self-Renewal and Differentiation Commitment in Embryonic and Adult Stem Cells, Molecular and Cellular Biology, vol.32, pp.1442-1452, 2012.
DOI : 10.1128/mcb.06323-11

URL : https://mcb.asm.org/content/32/8/1442.full.pdf

M. J. Barrero, B. Sese, M. Marti, I. Belmonte, and J. C. , Macro Histone Variants Are Critical for the Differentiation of Human Pluripotent Cells, Journal of Biological Chemistry, vol.288, pp.16110-16116, 2013.

M. Buschbeck, I. Uribesalgo, I. Wibowo, P. Rué, D. Martin et al., The histone variant macroH2A is an epigenetic regulator of key developmental genes, Nature Structural & Molecular Biology, vol.16, pp.1074-1079, 2009.

J. R. Pehrson, L. N. Changolkar, C. Costanzi, and N. A. Leu, Mice without MacroH2A Histone Variants, Molecular and Cellular Biology, vol.34, pp.4523-4533, 2014.
DOI : 10.1128/mcb.00794-14

URL : http://mcb.asm.org/content/34/24/4523.full.pdf

V. Pasque, A. Gillich, N. Garrett, and J. B. Gurdon, Histone variant macroH2A confers resistance to nuclear reprogramming, The EMBO Journal, vol.30, pp.2373-2387, 2011.
DOI : 10.1038/emboj.2011.144

URL : http://emboj.embopress.org/content/embojnl/30/12/2373.full.pdf

V. Pasque, A. Radzisheuskaya, A. Gillich, R. P. Halley-stott, M. Panamarova et al., Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency, Journal of Cell Science, vol.125, pp.6094-6104, 2013.
DOI : 10.1242/jcs.113019

URL : http://jcs.biologists.org/content/joces/125/24/6094.full.pdf

A. Gaspar-maia, Z. A. Qadeer, D. Hasson, K. Ratnakumar, N. A. Leu et al., MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency, Nature Communications, vol.4, pp.1565-1577, 2013.
DOI : 10.1038/ncomms2582

URL : http://www.nature.com/articles/ncomms2582.pdf

M. J. Barrero, B. Sesé, B. Kuebler, J. Bilic, S. Boue et al., Macrohistone Variants Preserve Cell Identity by Preventing the Gain of H3K4me2 during Reprogramming to, Pluripotency. CellReports, vol.3, pp.1005-1011, 2013.

J. Douet, D. Corujo, R. Malinverni, J. Renauld, V. Sansoni et al., MacroH2A histone variants maintain nuclear organization and heterochromatin architecture, Journal of Cell Science, vol.130, pp.1570-1582, 2017.
DOI : 10.1242/jcs.199216

URL : http://jcs.biologists.org/content/130/9/1570.full.pdf

Y. Fu, P. Lv, G. Yan, H. Fan, L. Cheng et al., MacroH2A1 associates with nuclear lamina and maintains chromatin architecture in mouse liver cells, 2015.
DOI : 10.1038/srep17186

URL : http://www.nature.com/articles/srep17186.pdf

M. Gamble and W. L. Kraus, Multiple facets of the unique histone variant macroH2A: From genomics to cell biology, vol.9, pp.70-69, 2010.

D. Angelov, A. Molla, P. Perche, F. Hans, J. Côté et al., The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling, Molecular Cell, vol.11, pp.1033-1041, 2003.
DOI : 10.1016/s1097-2765(03)00100-x

URL : https://hal.archives-ouvertes.fr/hal-00023762

C. M. Doyen, W. An, D. Angelov, V. Bondarenko, F. Mietton et al., Mechanism of Polymerase II Transcription Repression by the Histone Variant macroH2A, Molecular and Cellular Biology, vol.26, pp.1156-1164, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00091626

M. J. Gamble, K. M. Frizzell, C. Yang, R. Krishnakumar, and W. L. Kraus, The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing, Genes & Development, vol.24, pp.21-32, 2010.

K. Ouararhni, R. Hadj-slimane, A. , S. Robin, P. Mietton et al., The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity, Genes & Development, vol.20, pp.3324-3336, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00105117

H. Chen, P. D. Ruiz, L. Novikov, A. D. Casill, J. W. Park et al., MacroH2A1.1 and PARP-1 cooperate to regulate transcription by promoting CBP-mediated H2B acetylation, Nature Structural & Molecular Biology, vol.21, pp.981-989, 2014.

H. Chen, P. D. Ruiz, W. M. Mckimpson, L. Novikov, R. N. Kitsis et al., MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype, Molecular Cell, pp.1-14, 2015.

M. D. Lavigne, G. Vatsellas, A. Polyzos, E. Mantouvalou, G. Sianidis et al., Composite macroH2A/NRF-1 Nucleosomes Suppress Noise and Generate Robustness in, Gene Expression. CellReports, vol.11, pp.1090-1101, 2015.

S. Chakravarthy, S. Gundimella, C. Caron, P. Perche, J. R. Pehrson et al., Structural characterization of the histone variant macroH2A, Molecular and Cellular Biology, vol.25, pp.7616-7624, 2005.

G. Kustatscher, M. Hothorn, C. Pugieux, K. Scheffzek, and A. G. Ladurner, Splicing regulates NAD metabolite binding to histone macroH2A, Nature Structural & Molecular Biology, vol.12, pp.624-625, 2005.

G. I. Karras, G. Kustatscher, H. R. Buhecha, M. D. Allen, C. Pugieux et al., The macro domain is an ADP-ribose binding module, The EMBO Journal, vol.24, pp.1911-1920, 2005.

S. Lee, L. Tong, and J. M. Denu, Analytical Biochemistry. Analytical Biochemistry, vol.383, pp.174-179, 2008.

J. Haince, D. Mcdonald, A. Rodrigue, U. Déry, J. Masson et al., PARP1-dependent Kinetics of Recruitment of MRE11 and NBS1 Proteins to Multiple DNA Damage Sites, Journal of Biological Chemistry, vol.283, pp.1197-1208, 2008.

G. Jankevicius, M. Hassler, B. Golia, V. Rybin, M. Zacharias et al., A family of macrodomain proteins reverses cellular mono-ADP-ribosylation, Nature Structural & Molecular Biology, vol.20, pp.508-514, 2013.

R. Sharifi, R. Morra, C. D. Appel, M. Tallis, B. Chioza et al., Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease, The EMBO Journal, vol.32, pp.1225-1237, 2013.

F. Rosenthal, K. Feijs, E. Frugier, M. Bonalli, A. H. Forst et al., Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases, Nature Structural & Molecular Biology, vol.20, pp.502-507, 2013.

G. Timinszky, S. Till, P. O. Hassa, M. Hothorn, G. Kustatscher et al., A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation, Nature Structural & Molecular Biology, vol.16, pp.923-929, 2009.

P. V. Mehrotra, D. Ahel, D. P. Ryan, R. Weston, N. Wiechens et al., DNA Repair Factor APLF Is a Histone Chaperone, Molecular Cell, vol.41, pp.46-55, 2011.

P. Marjanovi?, M. Hurtado-bagès, S. Lassi, M. Valero, V. Malinverni et al., Nature Structural & Molecular Biology, pp.1-14, 2017.

D. A. Nusinow, I. Hernández-muñoz, T. G. Fazzio, G. M. Shah, W. L. Kraus et al., Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome, J Biol Chem, vol.282, pp.12851-12859, 2007.

H. Strickfaden, D. Mcdonald, M. J. Kruhlak, J. Haince, J. Th'ng et al., Poly(ADP-ribosyl)ation-dependent Transient Chromatin Decondensation and Histone Displacement following Laser Microirradiation, Journal of Biological Chemistry, vol.291, pp.1789-1802, 2016.

M. S. Luijsterburg, I. De-krijger, W. W. Wiegant, R. G. Shah, G. Smeenk et al., PARP1 Links CHD2-Mediated Chromatin Expansion and H3.3 Deposition to DNA Repair by Non-homologous End-Joining, Molecular Cell, vol.61, pp.547-562, 2016.

H. Sellou, T. Lebeaupin, C. Chapuis, R. Smith, A. Hegele et al., The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage, Mol Biol Cell, vol.27, pp.3791-3799, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01382426

M. J. Kruhlak, A. Celeste, G. Dellaire, O. Fernandez-capetillo, W. G. Müller et al., Changes in chromatin structure and mobility in living cells at sites of DNA double-strand breaks, The Journal of Cell Biology, vol.172, pp.823-834, 2006.

C. Bönisch, K. Schneider, S. Pünzeler, S. M. Wiedemann, C. Bielmeier et al., H2A.Z.2.2 is an alternatively spliced histone H2A.Z variant that causes severe nucleosome destabilization, Nucleic Acids Research, vol.40, pp.5951-5964, 2012.

U. M. Muthurajan, S. J. Mcbryant, X. Lu, J. C. Hansen, and K. Luger, The Linker Region of MacroH2A Promotes Selfassociation of Nucleosomal Arrays, Journal of Biological Chemistry, vol.286, pp.23852-23864, 2011.

T. L. Caterino, H. Fang, and J. J. Hayes, Nucleosome Linker DNA Contacts and Induces Specific Folding of the Intrinsically Disordered H1 Carboxyl-Terminal Domain, Molecular and Cellular Biology, vol.31, pp.2341-2348, 2011.

D. W. Abbott, B. P. Chadwick, A. A. Thambirajah, and J. Ausió, Beyond the Xi: macroH2A chromatin distribution and post-translational modification in an avian system, J Biol Chem, vol.280, pp.16437-16445, 2005.

S. Chakravarthy, A. Patel, and G. D. Bowman, The basic linker of macroH2A stabilizes DNA at the entry/exit site of the nucleosome, Nucleic Acids Research, vol.40, pp.8285-8295, 2012.

S. Khurana, M. J. Kruhlak, J. Kim, A. D. Tran, J. Liu et al., A Macrohistone Variant Links Dynamic Chromatin Compaction to BRCA1-Dependent Genome Maintenance, CellReports, vol.8, pp.1049-1062, 2014.

X. Lu, B. Hamkalo, M. H. Parseghian, and J. C. Hansen, Chromatin Condensing Functions of the Linker Histone CTerminal Domain Are Mediated by Specific Amino Acid Composition and Intrinsic Protein Disorder ?, Biochemistry, vol.48, pp.164-172, 2009.

I. Hernández-muñoz, A. H. Lund, P. Van-der-stoop, E. Boutsma, I. Muijrers et al., Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase, Proc Natl Acad Sci, vol.102, pp.7635-7640, 2005.

R. Yelagandula, H. Stroud, S. Holec, K. Zhou, S. Feng et al., The Histone Variant H2A.W Defines Heterochromatin and Promotes Chromatin Condensation in Arabidopsis, Cell, vol.158, pp.98-109, 2014.

W. Kabsch, Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants, 1993.

A. J. Mccoy, R. W. Grosse-kunstleve, L. C. Storoni, and R. J. Read, Acta Cryst, vol.61, pp.1-7, 2005.

J. Beaudouin, F. Mora-bermúdez, K. T. Daigle, and N. , Dissecting the Contribution of Diffusion and Interactions to the Mobility of Nuclear Proteins, Biophysical Journal, vol.90, pp.1878-1894, 2006.

N. Cantarino, E. Musulen, V. Valero, M. A. Peinado, M. Perucho et al., Downregulation of the Deiminase PADI2 is an Early Event in Colorectal Carcinogenesis and Indicates Poor Prognosis, Molecular Cancer Research, 2016.

M. Treier, A. S. Gleiberman, O. Connell, S. M. Szeto, D. P. Mcmahon et al., Multistep signaling requirements for pituitary organogenesis in vivo, Genes & Development, vol.12, pp.1691-1704, 1998.

N. Cantariño, M. T. Fernández-figueras, V. Valero, E. Musulen, R. Malinverni et al., A cellular model reflecting the phenotypic heterogeneity of mutant HRAS driven squamous cell carcinoma, Int J Cancer, vol.139, pp.1106-1116, 2016.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.9, pp.676-682, 2012.

P. Bawono and J. Heringa, PRALINE: A Versatile Multiple Sequence Alignment Toolkit, Methods in Molecular Biology pp, pp.245-262, 2013.

A. M. Waterhouse, J. B. Procter, D. Martin, M. Clamp, and G. J. Barton, Jalview Version 2-a multiple sequence alignment editor and analysis workbench, Bioinformatics, vol.25, pp.1189-1191, 2009.