A. Kumcu, K. Bombeke, L. Platisa, L. Jovanov, J. Looy et al., Performance of four subjective video quality assessment protocols and impact of different rating preprocessing and analysis methods IEEE, J. Sel. Top. Signal Process, vol.11, pp.48-63, 2017.

J. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE Trans. Pattern Anal. Mach. Intell, vol.2, pp.165-173, 1980.

J. Lee, Speckle analysis and smoothing of synthetic aperture radar images Comput, Gr. Image Process, vol.17, pp.24-32, 1981.

J. Liu, Y. Hu, J. Yang, Y. Chen, H. Shu et al., 3D feature constrained reconstruction for low dose, CT imaging IEEE Trans. Circuits Syst. Video Technol, vol.28, pp.1232-1279, 2017.

J. Liu, Discriminative feature representation to improve projection data inconsistency for low dose CT imaging, IEEE Trans. Med. Imaging, vol.36, pp.2499-509, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01685727

A. Locatelli, M. Piccoli, P. Vergani, E. Mariani, A. Ghidini et al., , 2000.

C. Loizou, V. Murray, M. Pattichis, M. Pantziaris, A. Nicolaides et al., Despeckle filtering for multiscale amplitude-modulation frequency-modulation (AM-FM) texture analysis of ultrasound images of the intima-media complex, Int. J. Biomed. Imaging, 2014.

C. Loizou, C. Pattichis, C. Christodoulou, R. Istepanian, P. et al., Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.52, pp.1653-69, 2005.

A. Mittal, R. Soundararajan, and A. Bovik, Making a 'completely blind' image quality analyzer, IEEE Signal Process. Lett, vol.20, pp.209-221, 2013.

M. Outtas, A. Serir, and F. Kerouh, Speckle noise reduction in ultrasound image based on a multiplicative multiresolution decomposition (MMD) The 8th Edition of Int, Image, Video and Communications, 2014.

M. Outtas, L. Zhang, O. Deforges, W. Hammidouche, A. Serir et al., A study on the usability of opinion-unaware no-reference natural image quality metrics in the context of medical images Int, Image, Video and Communications, pp.21-23, 2016.

M. Outtas, L. Zhang, O. Deforges, A. Serir, and W. Hamidouche, Multi-output speckle reduction filter for ultrasound medical images based on multiplicative multiresolution decomposition IEEE Int, on Image Processing, 2017.

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell, vol.12, pp.629-668, 1990.

A. Pizurica, W. Philips, L. I. Acheroy, and M. , A versatile wavelet domain noise filtration technique for medical imaging, IEEE Trans. Med. Imaging, vol.22, pp.323-354, 2003.

G. Ramos-llorden, G. Vegas-sanchez-ferrero, M. Martin-fernandez, C. Alberola-lopez, and S. Ajafernández, Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images, IEEE Trans. Image Process, vol.24, pp.345-58, 2014.

G. Ramponi, D. 'alvise, R. Moloney, and C. , Automatic estimation of the noise variance in SAR images for use in, speckle filtering Proc. of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, pp.20-23, 1999.

M. Razaak and M. Martini, Cuqi: cardiac ultrasound video quality index, J. Med. Imaging, vol.3, 2016.

E. Ritenour, T. Nelson, and U. Raff, Applications of the median filter to digital radiographic images IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 1984.

D. Rouse, R. Pépion, P. Callet, and S. Hemami, Tradeoffs in subjective testing methods for image and video quality assessment Human Vision and Electronic Imaging XV, part of the IS&T-SPIE Electronic Imaging Symp, Proc, pp.18-21, 2010.

V. Sa-ing, P. Vorasayan, N. Suwanwela, A. S. Chinrungrueng, and C. , Multiscale adaptive regularisation Savitzky-Golay method for speckle noise reduction in ultrasound images IET Image Process, vol.12, pp.105-117, 2018.