A. Achim, A. Bezerianos, and P. Tsakalides, Novel Bayesian multiscale method for speckle removal in medical ultrasound images, IEEE Trans. Med. Imaging, vol.20, pp.772-83, 2001.

A. López and C. , On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering, IEEE Trans. Image Process, vol.15, pp.2694-701, 2006.

A. Buades, B. Coll, and J. Morel, A review of image denoising algorithms, Multiscale Model. Simul, vol.4, pp.490-530, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00271141

C. Burckhardt, Speckle in ultrasound B-mode scans, IEEE Trans. Sonics Ultrason, vol.25, pp.1-6, 1978.

Y. Chen, W. Chen, X. Yin, X. Ye, X. Bao et al., Improving low-dose abdominal CT images by weighted intensity averaging over large-scale neighborhoods, Eur. J. Radiol, vol.80, pp.42-51, 2011.

Y. Chen, J. Ma, Q. Feng, L. Luo, P. Shi et al., Nonlocal prior Bayesian tomographic reconstruction, J. Math. Imaging Vis, vol.30, pp.133-179, 2008.

Y. Chen, Z. Yang, Y. Hu, G. Yang, Y. Zhu et al., Thoracic low-dose CT image processing using an artifact suppressed large-scale nonlocal means, Phys. Med. Biol, vol.57, pp.2667-88, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00677979

Y. Chen, Y. Zhang, H. Shu, J. Yang, L. Luo et al., Structure-adaptive fuzzy estimation for random-valued impulse noise suppression, IEEE Trans. Circuits Syst. Video Technol, vol.28, pp.414-441, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01740205

P. Coupé, P. Hellier, C. Kervrann, and C. Barillot, Nonlocal means-based speckle filtering for ultrasound images IEEE Trans. Image Process, vol.18, pp.2221-2230, 2009.

O. Déforges, N. N. Babel, and M. , Fast recursive grayscale morphology operators: from the algorithm to the pipeline architecture J. Real-Time Image Process, vol.8, pp.143-52, 2013.

D. Donoho, De-noising by soft-thresholding, IEEE Trans. Inf. Theory, vol.41, pp.613-640, 1995.

, European Commission, European Guidelines on Quality Criteria for Diagnostic Radiographic Images, 1996.

V. Frost, J. Stiles, K. Shanmugan, and J. Holtzman, A model for radar images and its application to adaptive digital filtering of multiplicative noise, IEEE Trans. Pattern Anal. Mach. Intell, vol.4, pp.157-66, 1982.

S. Gai, B. Zhang, Y. C. Yu, and L. , Speckle noise reduction in medical ultrasound image using monogenic wavelet and Laplace mixture distribution, Digit. Signal Process.: Rev. J, vol.72, pp.192-207, 2018.

J. Gerstenmaier and R. Gibson, Ultrasound in chronic liver disease Insights Imaging, vol.5, pp.441-55, 2014.

M. Imbault, A. Faccinetto, B. Osmanski, A. Tissier, T. Deffieux et al., Robust sound speed estimation for ultrasound-based hepatic steatosis assessment, Phys. Med. Biol, vol.62, p.3582, 2017.

J. Kang, J. Lee, and Y. Yoo, A new feature-enhanced speckle reduction method based on multiscale analysis for ultrasound B-mode imaging, IEEE Trans. Biomed. Eng, vol.63, pp.1178-91, 2016.

F. Kozamernik and E. Sunna, Subjective quality of internet video codecs: evaluation using SAMVIQ EBU Technical Review, 2005.

K. Krissian, C. Westin, K. R. Vosburgh, and K. , Oriented speckle reducing anisotropic diffusion, IEEE Trans. Image Process, vol.16, pp.1412-1436, 2007.

D. Kuan, A. Sawchuk, and T. Strand, Adaptive noise smoothing filter for images with signal-dependent noise, IEEE Trans. Pattern Anal. Mach. Intell, vol.7, pp.165-77, 1985.

A. Kumcu, K. Bombeke, L. Platisa, L. Jovanov, J. Looy et al., Performance of four subjective video quality assessment protocols and impact of different rating preprocessing and analysis methods IEEE, J. Sel. Top. Signal Process, vol.11, pp.48-63, 2017.

J. Lee, Digital image enhancement and noise filtering by use of local statistics, IEEE Trans. Pattern Anal. Mach. Intell, vol.2, pp.165-173, 1980.

J. Lee, Speckle analysis and smoothing of synthetic aperture radar images Comput, Gr. Image Process, vol.17, pp.24-32, 1981.

J. Liu, Y. Hu, J. Yang, Y. Chen, H. Shu et al., 3D feature constrained reconstruction for low dose, CT imaging IEEE Trans. Circuits Syst. Video Technol, vol.28, pp.1232-1279, 2017.

J. Liu, Discriminative feature representation to improve projection data inconsistency for low dose CT imaging, IEEE Trans. Med. Imaging, vol.36, pp.2499-509, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01685727

A. Locatelli, M. Piccoli, P. Vergani, E. Mariani, A. Ghidini et al., , 2000.

C. Loizou, V. Murray, M. Pattichis, M. Pantziaris, A. Nicolaides et al., Despeckle filtering for multiscale amplitude-modulation frequency-modulation (AM-FM) texture analysis of ultrasound images of the intima-media complex, Int. J. Biomed. Imaging, 2014.

C. Loizou, C. Pattichis, C. Christodoulou, R. Istepanian, P. et al., Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol.52, pp.1653-69, 2005.

A. Mittal, R. Soundararajan, and A. Bovik, Making a 'completely blind' image quality analyzer, IEEE Signal Process. Lett, vol.20, pp.209-221, 2013.

M. Outtas, A. Serir, and F. Kerouh, Speckle noise reduction in ultrasound image based on a multiplicative multiresolution decomposition (MMD) The 8th Edition of Int, Image, Video and Communications, 2014.

M. Outtas, L. Zhang, O. Deforges, W. Hammidouche, A. Serir et al., A study on the usability of opinion-unaware no-reference natural image quality metrics in the context of medical images Int, Image, Video and Communications, pp.21-23, 2016.

M. Outtas, L. Zhang, O. Deforges, A. Serir, and W. Hamidouche, Multi-output speckle reduction filter for ultrasound medical images based on multiplicative multiresolution decomposition IEEE Int, on Image Processing, 2017.

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell, vol.12, pp.629-668, 1990.

A. Pizurica, W. Philips, L. I. Acheroy, and M. , A versatile wavelet domain noise filtration technique for medical imaging, IEEE Trans. Med. Imaging, vol.22, pp.323-354, 2003.

G. Ramos-llorden, G. Vegas-sanchez-ferrero, M. Martin-fernandez, C. Alberola-lopez, and S. Ajafernández, Anisotropic diffusion filter with memory based on speckle statistics for ultrasound images, IEEE Trans. Image Process, vol.24, pp.345-58, 2014.

G. Ramponi, D. 'alvise, R. Moloney, and C. , Automatic estimation of the noise variance in SAR images for use in, speckle filtering Proc. of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing, pp.20-23, 1999.

M. Razaak and M. Martini, Cuqi: cardiac ultrasound video quality index, J. Med. Imaging, vol.3, 2016.

E. Ritenour, T. Nelson, and U. Raff, Applications of the median filter to digital radiographic images IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 1984.

D. Rouse, R. Pépion, P. Callet, and S. Hemami, Tradeoffs in subjective testing methods for image and video quality assessment Human Vision and Electronic Imaging XV, part of the IS&T-SPIE Electronic Imaging Symp, Proc, pp.18-21, 2010.

V. Sa-ing, P. Vorasayan, N. Suwanwela, A. S. Chinrungrueng, and C. , Multiscale adaptive regularisation Savitzky-Golay method for speckle noise reduction in ultrasound images IET Image Process, vol.12, pp.105-117, 2018.

A. Saha and Q. Wu, Utilizing image scales towards totally training free blind image quality assessment, IEEE Trans. Image Process, vol.24, pp.1879-92, 2015.

A. Serir and A. Belouchrani, Multiplicative multiresolution decomposition for 2D signals: application to speckle reduction in SAR images Int, Conf. on Image Processing, vol.1, 2004.

A. Serir, A. Beghdadi, and F. Kerouh, No-reference blur image quality measure based on multiplicative multiresolution decomposition, J. Vis. Commun. Image Represent, vol.24, pp.911-936, 2013.

H. Sheikh, A. Bovik, and L. Cormack, No-reference quality assessment using natural scene statistics: JPEG2000 IEEE Trans, Image Process, vol.14, pp.1918-1945, 2005.

M. Sonka, V. Hlavac, and R. Boyle, Analysis, and Machine Vision, 2007.

P. Sudeep, P. Palanisamy, J. Rajan, H. Baradaran, L. Saba et al.,

C. Vimala, A. Priya, and P. , Double density dual tree discrete wavelet transform implementation for degraded image enhancement, J. Phys.: Conf. Ser, vol.1000, p.12120, 2018.

R. Wagner, S. Smith, J. Sandrik, and H. Lopez, Statistics of speckle in ultrasound B-scans IEEE Trans. Sonics Ultrason, vol.30, pp.156-63, 1983.

S. Wu, Q. Zhu, and Y. Xie, Evaluation of various speckle reduction filters on medical ultrasound images 35th Annual Int, Conf. of the IEEE Engineering in Medicine and Biology Society, 2013.

W. Yang, Improving low-dose CT image using residual convolutional network IEEE Access, vol.5, pp.24698-705, 2017.

Y. Y. Acton, S. Zhang, F. Yoo, Y. Koh, L. Kim et al., Nonlinear diffusion in laplacian pyramid domain for ultrasonic speckle reduction, Speckle reducing anisotropic diffusion IEEE Trans. Image Process, vol.11, pp.200-211, 2002.

J. Zhang, W. C. Cheng, and Y. , Comparison of despeckle filters for breast ultrasound images Circuits Syst. Signal Process, vol.34, pp.185-208, 2015.