C. E. Foulds, L. S. Treviño, B. York, and C. L. Walker, Endocrine-disrupting chemicals and fatty liver disease, Nat. Rev. Endocrinol, vol.13, pp.445-457, 2017.
DOI : 10.1038/nrendo.2017.42

URL : http://europepmc.org/articles/pmc5657429?pdf=render

Z. M. Younossi, A. B. Koenig, D. Abdelatif, Y. Fazel, L. Henry et al., Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes, Hepatology, vol.64, pp.73-84, 2016.

C. R. Wong, M. H. Nguyen, and J. K. Lim, Hepatocellular carcinoma in patients with non-alcoholic fatty liver disease, World J. Gastroenterol, vol.22, pp.8294-8303, 2016.

S. Bellentani, The epidemiology of non-alcoholic fatty liver disease, Liver Int, vol.37, issue.1, pp.81-84, 2017.

B. Le-magueresse-battistoni, E. Labaronne, H. Vidal, and D. Naville, Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders, World J. Biol. Chem, vol.8, pp.108-119, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01848536

C. Puoti, M. G. Elmo, D. Ceccarelli, and M. Ditrinco, Liver steatosis: The new epidemic of the Third Millennium. Benign liver state or silent killer?, Eur. J. Intern. Med, issue.17, pp.30268-30274, 2017.

H. K. Seitz, R. Bataller, H. Cortez-pinto, B. Gao, and A. Gual, Alcoholic liver disease, Nat. Rev. Dis. Primers, vol.4, p.16, 2018.

S. Bucher, A. Tête, N. Podechard, M. Liamin, and D. L. Guillou, Co-exposure to, Sci Rep, vol.8, p.5963, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01771620

N. Kazerouni, R. Sinha, C. H. Hsu, A. Greenberg, and N. Rothman, Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study, Food Chem. Toxicol, vol.39, pp.423-436, 2001.

A. T. Vu, K. M. Taylor, M. R. Holman, Y. S. Ding, and B. Hearn, Polycyclic aromatic hydrocarbons in the mainstream smoke of popular U.S. cigarettes, Chem. Res. Toxicol, vol.28, pp.1616-1626, 2015.

S. Uno, D. W. Nebert, and M. Makishima, Cytochrome P450 1A1 (CYP1A1) protects against nonalcoholic fatty liver disease caused by Western diet containing benzo[a]pyrene in mice, Food Chem. Toxicol, vol.113, pp.73-82, 2018.
DOI : 10.1016/j.fct.2018.01.029

URL : https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831517

A. Akhavan-rezayat, M. Dadgar-moghadam, M. G. Nour, M. Shirazinia, and H. Ghodsi, Association between smoking and non-alcoholic fatty liver disease: A systematic review and metaanalysis, SAGE Open Med, vol.6, p.2050312117745223, 2018.

A. Hamabe, H. Uto, Y. Imamura, K. Kusano, and S. Mawatari, Impact of cigarette smoking on onset of nonalcoholic fatty liver disease over a 10-year period, J. Gastroenterol, vol.46, pp.769-778, 2011.

L. Miele, V. , C. Cefalo, B. Nedovic, and D. Arzani, A case-control study on the effect of metabolic gene polymorphisms, nutrition, and their interaction on the risk of non-alcoholic fatty liver disease, Genes Nutr, vol.9, p.383, 2014.

S. Zelber-sagi, V. Ratziu, O. Oren, and R. , Nutrition and physical activity in NAFLD: an overview of the epidemiological evidence, World J. Gastroenterol, vol.17, pp.3377-3389, 2011.

K. E. Anderson, F. F. Kadlubar, M. Kulldorff, L. Harnack, and M. Gross, Dietary intake of heterocyclic amines and benzo(a)pyrene: associations with pancreatic cancer, Cancer Epidemiol Biomarkers Prev, vol.14, pp.2261-2265, 2005.

P. Erkekoglu, D. Oral, D. , M. W. Chao, and B. , Kocer-Gumusel, Hepatocellular Carcinoma and Possible Chemical and Biological Causes: A Review, J. Environ. Pathol. Toxicol. Oncol, vol.36, pp.171-190, 2017.
DOI : 10.1615/jenvironpatholtoxicoloncol.2017020927

M. Tian, B. Zhao, J. Zhang, F. L. Martin, and Q. Huang, Association of environmental benzo[a]pyrene exposure and DNA methylation alterations in hepatocellular carcinoma: A Chinese case-control study, Sci. Total Environ, vol.541, pp.1243-1252, 2016.

H. Kuper, A. Tzonou, E. Kaklamani, C. C. Hsieh, and P. Lagiou, Tobacco smoking, alcohol consumption and their interaction in the causation of hepatocellular carcinoma, Int. J. Cancer, vol.85, pp.498-502, 2000.

W. L. Shih, H. C. Chang, Y. F. Liaw, S. M. Lin, and S. D. Lee, Influences of tobacco and alcohol use on hepatocellular carcinoma survival, Int. J. Cancer, vol.131, pp.2612-2621, 2012.

M. T. Donato, A. Lahoz, N. Jiménez, G. Pérez, G. et al., Potential impact of steatosis on cytochrome P450 enzymes of human hepatocytes isolated from fatty liver grafts, Drug Metab. Dispos, vol.34, pp.1556-1562, 2006.

C. D. Fisher, A. J. Lickteig, L. M. Augustine, J. Ranger-moore, and J. P. Jackson, Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease, Drug Metab. Dispos, vol.37, pp.2087-2094, 2009.

M. D. Merrell and N. J. Cherrington, Drug metabolism alterations in nonalcoholic fatty liver disease, Drug Metab. Rev, vol.43, pp.317-334, 2011.

E. Cobbina and F. Akhlaghi, Non-alcoholic fatty liver disease (NAFLD)-pathogenesis, classification, and effect on drug metabolizing enzymes and transporters, Drug Metab. Rev, vol.17, pp.1-15, 2017.

J. A. Cichocki, S. Furuya, K. Konganti, Y. S. Luo, and T. J. Mcdonald, Impact of nonalcoholic fatty liver disease on toxicokinetics of tetrachloroethylene in Mice, J. Pharmacol. Exp. Ther, vol.361, pp.17-28, 2017.

J. Aubert, K. Begriche, L. Knockaert, M. A. Robin, and B. Fromenty, Increased expression of cytochrome P450 2E1 in nonalcoholic fatty liver disease: mechanisms and pathophysiological role, Clin. Res. Hepatol. Gastroenterol, vol.35, pp.630-637, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00739365

B. J. Song, M. Akbar, I. Jo, J. P. Hardwick, and M. A. Abdelmegeed, Translational Implications of the Alcohol-Metabolizing Enzymes, Including Cytochrome P450-2E1, in Alcoholic and Nonalcoholic Liver Disease, Adv. Pharmacol, vol.74, pp.303-372, 2015.

X. Zhang, S. Li, Y. Zhou, W. Su, and X. Ruan, Ablation of cytochrome P450 omegahydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis, Proc. Natl. Acad. Sci. U S A, vol.114, pp.3181-3185, 2017.

A. Collin, K. Hardonnière, M. Chevanne, J. Vuillemin, and N. Podechard, Cooperative interaction of benzo[a]pyrene and ethanol on plasma membrane remodeling is responsible for enhanced oxidative stress and cell death in primary rat hepatocytes, Free Radic, Biol. Med, vol.72, pp.11-22, 2014.

S. L. Hockley, V. M. Arlt, D. Brewer, I. Giddings, and D. H. Phillips, Time-and concentrationdependent changes in gene expression induced by benzo(a)pyrene in two human cell lines, MCF-7 and HepG2, BMC Genomics, vol.7, p.260, 2006.

S. Kalkhof, F. Dautel, S. Loguercio, S. Baumann, and S. Trump, Pathway and time-resolved benzo[a]pyrene toxicity on Hepa1c1c7 cells at toxic and subtoxic exposure, J. Proteome Res, vol.14, pp.164-182, 2015.

C. Decaens, P. Rodriguez, C. Bouchaud, and D. Cassio, Establishment of hepatic cell polarity in the rat hepatoma-human fibroblast hybrid WIF-B9. A biphasic phenomenon going from a simple epithelial polarized phenotype to an hepatic polarized one, J Cell. Science, vol.109, pp.1623-1635, 1996.

M. Liamin, E. Boutet-robinet, E. L. Jamin, M. Fernier, and L. Khoury, Benzo[a]pyrene-induced DNA damage associated with mutagenesis in primary human activated T lymphocytes, Biochem Pharmacol, vol.137, pp.113-124, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01560145

N. Quesnot, S. Bucher, C. Gade, M. Vlach, and E. Vene, Production of chlorzoxazone glucuronides via cytochrome P4502E1 dependent and independent pathways in human hepatocytes, Arch. Toxicol, vol.92, pp.3077-3091, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01863847

N. Grova, G. Salquebre, and B. M. Appenzeller, Gas chromatography-tandem mass spectrometry analysis of 52 monohydroxylated metabolites of polycyclic aromatic hydrocarbons in hairs of rats after controlled exposure, Anal. Bioanal. Chem, vol.405, pp.8897-911, 2013.

S. M. Staufenbiel, B. W. Penninx, Y. B. De-rijke, E. L. Van-den-akker, and E. F. Van-rossum, Determinants of hair cortisol and hair cortisone concentrations in adults, Psychoneuroendocrinology, vol.60, pp.182-194, 2015.

N. Grova, G. Salquebre, E. M. Hardy, H. Schroeder, and B. M. Appenzeller, Tetrahydroxylatedbenzo[a]pyrene isomer analysis after hydrolysis of DNA-adducts isolated from rat and human white blood cells, J. Chromatogr. A, vol.1364, pp.183-91, 2014.

J. Zielonka, J. Vasquez-vivar, and B. Kalyanaraman, Detection of 2-hydroxyethidium in cellular systems: a unique marker product of superoxide and hydroethidine, Nat. Protoc, vol.3, pp.8-21, 2008.

J. Zielonka and B. Kalyanaraman, Small-molecule luminescent probes for the detection of cellular oxidizing and nitrating species, Free Radic, Biol. Med, issue.18, pp.30135-30142, 2018.

R. R. Nazarewicz, A. Bikineyeva, and S. I. Dikalov, Rapid and specific measurements of superoxide using fluorescence spectroscopy, J. Biomol. Screen, vol.18, pp.498-503, 2013.

I. Morel, G. Lescoat, J. Cillard, N. Pasdeloup, and P. Brissot, Kinetic evaluation of free malondialdehyde and enzyme leakage as indices of iron damage in rat hepatocyte cultures. Involvement of free radicals, Biochem. Pharmacol, vol.39, pp.1647-1655, 1990.

O. Sergent, B. Griffon, I. Morel, M. Chevanne, and M. P. Dubos, Effect of nitric oxide on ironmediated oxidative stress in primary rat hepatocyte culture, Hepatology, vol.25, pp.122-127, 1997.

J. A. Holme, M. Gorria, V. M. Arlt, S. Ovrebø, and A. Solhaug, Different mechanisms involved in apoptosis following exposure to benzo, F258 and Hepa1c1c7 cells, vol.167, pp.41-55, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00690306

K. Hardonnière, L. Huc, O. Sergent, J. A. Holme, and D. Lagadic-gossmann, Environmental carcinogenesis and pH homeostasis: Not only a matter of dysregulated metabolism, Semin. Cancer Biol, vol.43, pp.49-65, 2017.

A. Solhaug, M. Refsnes, and J. A. Holme, Role of cell signalling involved in induction of apoptosis by benzo[a]pyrene and cyclopenta[c,d]pyrene in Hepa1c1c7 cells, J. Cell. Biochem, vol.93, pp.1143-1154, 2004.

C. Biagini, V. Bender, F. Borde, E. Boissel, and M. C. Bonnet, Cytochrome P450 expressioninduction profile and chemically mediated alterations of the WIF-B9 cell line, Biol. Cell, vol.98, pp.23-32, 2006.

N. W. Cornell, C. Hansch, K. H. Kim, and K. Henegar, The inhibition of alcohol dehydrogenase in vitro and in isolated hepatocytes by 4-substituted pyrazoles, Arch. Biochem. Biophys, vol.227, pp.81-90, 1983.

K. Swaminathan, D. L. Clemens, and A. Dey, Inhibition of CYP2E1 leads to decreased malondialdehyde-acetaldehyde adduct formation in VL-17A cells under chronic alcohol exposure, Life Sci, vol.92, pp.325-336, 2013.

M. Zhao, E. W. Howard, Z. Guo, A. B. Parris, and X. Yang, p53 pathway determines the cellular response to alcohol-induced DNA damage in MCF-7 breast cancer cells, PLoS One, vol.12, p.175121, 2017.

A. Naik, A. Beli?, U. M. Zanger, and D. Rozman, Molecular interactions between NAFLD and xenobiotic metabolism

D. W. Crabb, W. F. Bosron, and T. K. Li, Ethanol metabolism, Pharmacol. Ther, vol.34, pp.59-73, 1987.

A. I. Cederbaum, Alcohol metabolism, Clin. Liver Dis, vol.16, pp.667-685, 2012.

E. A. Attignon, A. F. Leblanc, B. Le-grand, C. Duval, and M. Aggerbeck, Novel roles for AhR and ARNT in the regulation of alcohol dehydrogenases in human hepatic cells, Arch. Toxicol, vol.91, pp.313-324, 2017.

H. J. Edenberg, The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants, Alcohol Res. Health, vol.30, pp.5-13, 2007.

A. Engin, Non-Alcoholic Fatty Liver Disease, Adv. Exp. Med. Biol, vol.960, pp.443-467, 2017.

S. Spahis, E. Delvin, J. M. Borys, and E. Levy, Oxidative Stress as a Critical Factor in Nonalcoholic Fatty Liver Disease Pathogenesis, Antioxid. Redox Signal, vol.26, pp.519-541, 2017.

I. Kurose, H. Higuchi, S. Kato, S. Miura, and H. Ishii, Ethanol-induced oxidative stress in the liver, Alcohol Clin. Exp. Res, vol.20, issue.1, pp.77-85, 1996.

O. Sergent, M. Pereira, C. Belhomme, M. Chevanne, and L. Huc, Role for membrane fluidity in ethanol-induced oxidative stress of primary rat hepatocytes, J. Pharmacol. Exp. Ther, vol.313, pp.104-111, 2005.

M. Gorria, L. Huc, O. Sergent, A. Rebillard, and F. Gaboriau, Protective effect of monosialoganglioside GM1 against chemically induced apoptosis through targeting of mitochondrial function and iron transport, Biochem. Pharmacol, vol.72, pp.1343-1353, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00699820

M. J. Kelner, R. Bagnell, and K. J. Welch, Thioureas react with superoxide radicals to yield a sulfhydryl compound. Explanation for protective effect against paraquat, J. Biol. Chem, vol.265, pp.1306-1311, 1990.

D. S. Farmer, P. Burcham, and P. D. Marin, The ability of thiourea to scavenge hydrogen peroxide and hydroxyl radicals during the intra-coronal bleaching of bloodstained root-filled teeth, Aust. Dent. J, vol.51, pp.146-152, 2006.

D. A. Wink and J. B. Mitchell, Chemical biology of nitric oxide: Insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide, Free Radic, Biol. Med, vol.25, pp.434-456, 1998.

J. D. Laskin, D. E. Heck, C. R. Gardner, and D. L. Laskin, Prooxidant and antioxidant functions of nitric oxide in liver toxicity, Antioxid. Redox Signal, vol.3, pp.261-271, 2001.

S. Thomas, J. E. Lowe, R. G. Knowles, I. C. Green, and M. H. Green, Factors affecting the DNA damaging activity of superoxide and nitric oxide, Mutat. Res, vol.402, issue.97, pp.284-288, 1998.

T. P. Misko, M. K. Highkin, A. W. Veenhuizen, P. T. Manning, and M. K. Stern, Characterization of the cytoprotective action of peroxynitrite decomposition catalysts, J. Biol. Chem, vol.273, pp.15646-15653, 1998.

C. Szabó and H. Ohshima, DNA damage induced by peroxynitrite: subsequent biological effects, Nitric Oxide, vol.1, pp.373-385, 1997.

A. L. Plant, D. M. Benson, and L. C. Smith, Cellular uptake and intracellular localization of benzo(a)pyrene by digital fluorescence imaging microscopy, J. Cell. Biol, vol.100, pp.1295-1308, 1985.

R. Ali, S. Trump, S. , I. Lehmann, and T. Hanke, Live cell imaging of the intracellular compartmentalization of the contaminate benzo[a]pyrene, J. Biophotonics, vol.8, pp.361-371, 2015.

K. Hardonnière, L. Huc, N. Podechard, M. Fernier, and X. Tekpli, Benzo[a]pyrene-induced nitric oxide production acts as a survival signal targeting mitochondrial membrane potential, Toxicol. In Vitro, vol.29, pp.1597-1608, 2015.

F. Aktan, iNOS-mediated nitric oxide production and its regulation, Life Sci, vol.75, pp.639-653, 2004.

X. W. Zhu and J. P. Gong, Expression and role of icam-1 in the occurrence and development of hepatocellular carcinoma, Asian Pac, J. Cancer Prev, vol.14, pp.1579-1583, 2013.

D. W. Nebert, Z. Shi, M. Gálvez-peralta, S. Uno, N. Dragin et al., Understanding Pharmacokinetics, Detoxication, and Consequences-Cyp1 Knockout Mouse Lines as a Paradigm, vol.84, pp.304-313, 2013.

C. Marie, M. Bouchard, R. Heredia-ortiz, C. Viau, and A. Maître, A toxicokinetic study to elucidate 3-hydroxybenzo(a)pyrene atypical urinary excretion profile following intravenous injection of benzo(a)pyrene in rats, J. Appl. Toxicol, vol.30, pp.402-410, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01903188

A. P. Rolo, J. S. Teodoro, and C. M. Palmeira, Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis, Free Radic, Biol. Med, vol.52, pp.59-69, 2012.

E. K. Daugherity, G. Balmus, A. Saei, E. S. Moore, and D. Abi-abdallah, The DNA damage checkpoint protein ATM promotes hepatocellular apoptosis and fibrosis in a mouse model of nonalcoholic fatty liver disease, Cell Cycle, vol.11, pp.1918-1928, 2012.

S. Seki, T. Kitada, T. Yamada, H. Sakaguchi, and K. Nakatani, In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases, J. Hepatol, vol.37, pp.56-62, 2002.

P. Pacher, J. S. Beckman, and L. Liaudet, Nitric oxide and peroxynitrite in health and disease, Physiol. Rev, vol.87, pp.315-424, 2007.

I. García-ruiz, P. Solís-muñoz, D. Fernández-moreira, M. Grau, and F. Colina, High-fat diet decreases activity of the oxidative phosphorylation complexes and causes nonalcoholic steatohepatitis in mice, Dis. Model Mech, vol.7, pp.1287-1296, 2014.

K. Shiizaki, M. Kawanishi, and T. Yagi, Modulation of benzo[a]pyrene-DNA adduct formation by CYP1 inducer and inhibitor, Genes Environ, vol.39, p.14, 2017.

Q. Shi, L. Maas, C. Veith, F. J. Van-schooten, and R. W. Godschalk, Acidic cellular microenvironment modifies carcinogen-induced DNA damage and repair, Arch Toxicol, vol.91, pp.2425-2441, 2017.

R. Nordmann, C. Ribière, and H. Rouach, Implication of free radical mechanisms in ethanol-induced cellular injury, Free Radic, Biol. Med, vol.12, pp.219-240, 1992.

K. S. Tummala, A. L. Gomes, M. Yilmaz, O. Graña, L. Bakiri et al., Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage, Cancer Cell, vol.26, pp.826-839, 2014.

O. Novikov, Z. Wang, E. Stanford, A. J. Parks, and A. Ramirez-cardenas, An Aryl Hydrocarbon Receptor-Mediated Amplification Loop That Enforces Cell Migration in ER-/PR-/Her2Human Breast Cancer Cells, Mol. Pharmacol, vol.90, pp.674-688, 2016.

Y. S. Elhassan, A. A. Philp, and G. G. Lavery, Targeting NAD+ in Metabolic Disease: New Insights Into an Old Molecule, J. Endocr. Soc, vol.1, pp.816-835, 2017.

M. Orellana, R. Rodrigo, N. Varela, J. Araya, and J. Poniachik, Relationship between in vivo chlorzoxazone hydroxylation, hepatic cytochrome P450 2E1 content and liver injury in obese nonalcoholic fatty liver disease patients, Hepatol. Res, vol.34, pp.57-63, 2006.

J. Stadler, J. Trockfeld, W. A. Schmalix, T. Brill, and J. R. Siewert, Inhibition of cytochromes P4501A by nitric oxide, Proc. Natl. Acad. Sci. U S A, vol.91, pp.3559-3563, 1994.

D. Gergel, V. Misík, P. Riesz, and A. I. Cederbaum, Inhibition of rat and human cytochrome P4502E1 catalytic activity and reactive oxygen radical formation by nitric oxide, Arch. Biochem. Biophys, vol.337, pp.239-250, 1997.

R. Vuppugalla and R. Mehvar, Hepatic disposition and effects of nitric oxide donors: rapid and concentration-dependent reduction in the cytochrome P450-mediated drug metabolism in isolated perfused rat livers, J. Pharmacol. Exp. Ther, vol.310, pp.718-727, 2004.

K. Fujita, Y. Nozaki, M. Yoneda, K. Wada, and H. Takahashi, Nitric oxide plays a crucial role in the development/progression of nonalcoholic steatohepatitis in the choline-deficient, l-amino aciddefined diet-fed rat model, Alcohol Clin. Exp. Res, vol.34, issue.1, pp.18-24, 2010.

Y. Iwakiri and M. Y. Kim, Nitric oxide in liver diseases, Trends Pharmacol. Sci, vol.36, pp.524-536, 2015.

H. Kamata and H. Hirata, Redox regulation of cellular signaling, Cell Signal, vol.11, pp.1-14, 1999.

H. J. Park, J. Y. Lee, M. Y. Chung, Y. K. Park, and A. M. Bower, Green tea extract suppresses NF?B activation and inflammatory responses in diet-induced obese rats with nonalcoholic steatohepatitis, J. Nutr, vol.142, pp.57-63, 2012.

J. Li, T. N. Sapper, E. Mah, S. Rudraiah, and K. E. Schill, Green tea extract provides extensive Nrf2-independent protection against lipid accumulation and NF?B pro-inflammatory responses during (F) CYP1 enzyme activity was assessed by measuring EROD activity from intact cells. Results are means ± SD for at least three independent cultures. *: Significantly different from condition without ?NF. a: Significantly different from corresponding control (with or without steatosis). b: Significantly different from B

, Fig 3. Formation of B[a]P metabolites was altered by steatosis and upon ethanol co-exposure

, alone or in combination with 5 mM ethanol for 5 days. B[a]P metabolites in culture media were analyzed by gas chromatography tandem mass-spectrometry. Results are quoted as proportion of B[a]P relatively to total OH-and total diOH-B[a]P metabolites detected under the different conditions (cf. Supplementary supplementary Table S2 for values), Non-steatotic or steatotic hepatocytes were treated with 10 nM B

, Non-steatotic or steatotic hepatocytes were treated or not (C; treated with DMSO) with 5 mM ethanol (E), 10 nM B[a]P (B) or a combination of both toxicants (BE) for 5 days (A-C, F) or 3 h (D,E), in presence or not of inhibitor. The involvement of ethanol metabolism was analyzed by testing the effect of the, steatotic WIF-B9 cells

, UV detection) of the formation of OCZX. ADH activity was evaluated by measuring the NADH production by spectrophotometry in the absence (D) or presence (E) of the AhR inhibitor CH-223191 (CH; 3 µM). This activity was given relative to control cells. (F) Involvement of AhR in apoptosis was evaluated after co-treatment with CH. Results are means ± SD for at least three independent cultures. *: Significantly different from condition without inhibitor (4-MP or CH). a: Significantly different from corresponding control (with or without steatosis), Hoechst 33342 staining, and (B) DNA damage evaluated by counting cells positive for ?H2AX staining. (C) CYP2E1 activity was assessed by HPLC analyses

, Non-steatotic or steatotic hepatocytes were treated or not (C; treated with DMSO) with 5 mM ethanol (E), 10 nM B[a]P (B) or a combination of both toxicants (BE) for 5 days, in presence or not of antioxidant. The involvement of oxidative stress in toxicity was evaluated by testing the effects of the antioxidant molecule thiourea (6.25 mM) on (A) apoptosis after Hoechst 33342 staining, and (C) DNA damage evaluated by counting cells positive for ?H2AX staining. (B) Lipid peroxidation was assessed by measuring the production of malondialdehyde (MDA) by HPLC. (D) The superoxide anion production was assessed by the measurement in fluorescence of 2-OH ethidium using DHE probe. Results are means ± SD for at least three independent cultures. *: Significantly different from condition without thiourea. a: Significantly different from corresponding HIGHLIGHTS ? 1-Death of steatotic hepatocytes co-exposed to, Fig 5. Involvement of oxidative stress in the cell death induced by

, ? 3-AhR and NF?B would be involved in iNOS induction, thus leading to NO production

, ? 5-Death of co-exposed steatotic cells involves a peroxynitrite-dependent DNA damage