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Abstract 24 

The transition to motherhood is characterized by some of the most pronounced endocrine 25 

changes a women will experience in her lifetime. Unfortunately matrescence is also a time in a 26 

woman’s life when she is most susceptible to mental illness such as perinatal depression. A 27 

growing body of research has aimed to determine how key endocrine systems, such as the 28 

hypothalamic-pituitary-adrenal (HPA) axis, are involved in the dysregulation of perinatal mental 29 

health. However, very little research has consistently linked perinatal changes in the HPA axis 30 

with maternal mental illness. Therefore the aims of this mini review are to 1) clearly summarize 31 

the normative changes in the HPA axis that occur during pregnancy and the postpartum period; 32 

2) summarize what we know about the HPA axis in perinatal depression, and 3) propose key 33 

areas for future research. Understanding physiological biomarkers that can predict which women 34 

are at risk for perinatal mood disorders will lead to better tools for treating and ultimately 35 

preventing these debilitating disorders; improving the health of mother, child and family.  36 

 37 
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Introduction 42 

The perinatal period is marked by arguably the most pronounced endocrine changes a women 43 

will experience in her lifetime. These physiological changes in the mother are essential for 44 

pregnancy, birth, lactation, as well as child development and survival. Unfortunately the 45 

perinatal period is also a time when a woman is most susceptible to mental illness (1,2). A 46 

growing body of research has aimed to discover how key endocrine systems are involved in the 47 

dysregulation of perinatal mental health (3,4). Because of its role in stress and the effects of 48 

stress in the development of mental illness (5) the hypothalamic-pituitary-adrenal (HPA) axis has 49 

been acknowledged as a key player in perinatal mental illnesses (6). However, very little 50 

research has consistently contributed changes in the HPA axis during pregnancy and/or the 51 

postpartum period with perinatal mental illnesses such as postpartum depression (arguably the 52 

most well studied maternal mental illness) (6-8). Therefore, the aims of this mini review are to 1) 53 

clearly summarize the normative changes in the HPA axis that occur during pregnancy, 54 

parturition and the postpartum period; 2) summarize what we know about the HPA axis in 55 

perinatal depression and, where possible, anxiety, from clinical research and animal models; and 56 

3) propose key areas for future research. We have very little knowledge of the physiological 57 

basis of maternal mental illnesses yet the tragic consequences are clear - suicide is the leading 58 

cause of death in pregnant and postpartum women (9). Given the role that the HPA axis plays in 59 

mental illness outside of the perinatal period we hope this review will provide information for 60 

areas of future research on perinatal mental illnesses.  61 

In writing this mini review we relied on recent studies and reviews in the area, as well as 62 

essential foundational studies related to HPA regulation and mental health, and HPA regulation 63 

during pregnancy and the postpartum period. 64 
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HPA and the Perinatal Period 65 

The HPA axis is characterized by a cascade of hormones that regulates glucocorticoids 66 

(predominantly cortisol in humans, corticosterone in rodents, and for purposes of this review, we 67 

will be referring to cortisol). Often the HPA axis is associated with cortisol release in response to 68 

stress but its regulation also has important basic homeostatic functionalities beyond responding 69 

to acute stressors (e.g. metabolism, immune system regulation)(10). The hormone cascade is 70 

initiated in the corticotrophs of the paraventricular nucleus (PVN) of the hypothalamus, which 71 

release corticotrophin releasing hormone (CRH) and arginine vasopressin (AVP), hormones that 72 

then stimulate the anterior pituitary gland to release adrenocorticotropin releasing hormone 73 

(ACTH) which stimulates the adrenal cortex to release cortisol (10). Increased cortisol 74 

concentrations exert negative feedback on all levels of the HPA axis via glucocorticoid receptors 75 

(GR) to ensure a relatively rapid return of cortisol to baseline concentrations (10,11).  76 

Stimulation and maintenance of the HPA axis and cortisol signaling at the level of the 77 

adrenals relies on a number of factors and input from the brain to the circulation. Brain regions, 78 

such as the hippocampus, amygdala, and prefrontal cortex, for example, regulate the response to, 79 

and recovery from, an acute stress and play a role in daily functions such as cognition (12,13). In 80 

the bloodstream, corticosteroid binding globulin (CBG) regulates the bioavailability of cortisol to 81 

bind receptors (14). Throughout the body, the presence (or absence) of these mineralocorticoid 82 

and glucocorticoid receptors (MR and GR, respectively) impact the response and relative 83 

responsiveness to cortisol. In addition, MRs and GRs have different affinities for cortisol with 84 

MRs having 10x the affinity for cortisol when compared to GRs (15). For cells that express both 85 

of these receptor types (not all do), GRs only bind cortisol when cortisol levels reach stress-86 

induced concentrations. At the cellular level, the enzyme 11β-hydroxysteroid dehydrogenase 87 
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(11β-HSD) converts glucocorticoids to an inactive form and, with CBG, determines the 88 

bioavailability of cortisol to bind the different receptor types (16-18).  89 

Pregnancy, birth, and lactation significantly change the way the HPA axis and circulating 90 

cortisol functions. Many important basic and new functionalities of the HPA hormones overlap 91 

such that increased cortisol concentrations (and to some degree, placental CRH (pCRH) that we 92 

will describe below) are responsible for critical stages of a healthy pregnancy. These stages 93 

include (but are not limited to) preparing the fetus for the outside world (maturation of systems 94 

thermoregulation, glucose metabolism, lung development, etc) (19-21), parturition (22), labor 95 

(23), and activation of mammary glands and milk synthesis (24). Perhaps due to these increased 96 

functionalities, basal cortisol concentrations rise throughout pregnancy. The steepest increase in 97 

cortisol levels occurs in the final weeks of pregnancy, reaching 2-5 times non-pregnant 98 

concentrations, but with great variability between individuals (as reviewed in (25)). The diurnal 99 

rhythm of the HPA axis appears to be blunted during this time (26) as is the HPA response to 100 

acute stress in pregnancy (27) and lactation (28,29).   101 

The predominant factor responsible for the elevated basal cortisol concentrations in 102 

human pregnancy is not the HPA axis, but it is the placenta. During pregnancy, the placenta 103 

increasingly exerts its role as an endocrine gland. In addition to secreting estrogens and 104 

progesterone, the placenta releases its own version of CRH (placental CRH, pCRH) which is 105 

identical in structure and bioactivity to hypothalamic CRH (30) but due to its size likely does not 106 

cross the blood brain barrier (31). Placental CRH is responsible for the elevation in circulating 107 

cortisol concentrations (32). Importantly, pCRH, and subsequent increases in cortisol 108 

concentrations, do not follow the classic negative feedback system seen with hypothalamic CRH. 109 

Instead, cortisol stimulates the human placenta to produce pCRH (33,34) and, pCRH, in turn, 110 
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continues to stimulate cortisol production which results in a positive feedback loop (Figure 1B). 111 

CBG levels also increase during pregnancy and decrease in the weeks and days prior to delivery 112 

(35). The rise in CBG levels during gestation is not enough to decrease (or ‘normalize’) free 113 

cortisol concentrations; possibly due to the high affinity of CBG for rising progesterone levels 114 

(36).  115 

Another marked difference between hypothalamic CRH and pCRH is that circulating 116 

pCRH is bound to a binding protein, CRH-BP. CRH-BP can modify the bioactivity of pCRH 117 

throughout pregnancy. This is especially true in the last few weeks of pregnancy when CRH-BP 118 

levels fall by nearly 50% and free circulating pCRH levels rise (37). With changes in CRH-BP, 119 

pCRH concentrations increase exponentially across pregnancy (likely due to the positive 120 

feedback loop with cortisol), and a decreased response to cortisol negative feedback occurs along 121 

the HPA axis (38). Thus, circulating cortisol concentrations continue to increase throughout 122 

pregnancy. Cortisol concentrations at the end of a healthy pregnancy reach concentrations only 123 

seen in non-pregnant individuals with severe HPA dysregulation, such as Cushing’s Disease 124 

(30).  125 

Even though pCRH is the factor responsible for circulating levels of maternal cortisol, the 126 

HPA axis during pregnancy still maintains a role in the maintenance of maternal HPA pulsatility 127 

(both circadian and ultradian rhythms)(39). Since CRH in the brain is at nearly undetectable 128 

levels, AVP from the PVN is likely responsible for this prenatal HPA pulsatility (30).  129 

 Although concentrations of cortisol during pregnancy reach levels well beyond what is 130 

normally seen in a healthy, non-pregnant, individual, it has been suggested that maternal cortisol 131 

can’t be too high. Exposure to optimal and adaptive circulating cortisol concentrations facilitate 132 

growth and development of the fetus and supports the maintenance of pregnancy. To protect the 133 
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fetus from cortisol levels outside of an optimal range placental 11β-HSD metabolizes maternal 134 

cortisol (40). In addition, during pregnancy and into the postpartum period the responsiveness of 135 

the HPA axis to stress is blunted, and this reduced HPA axis response may act to further protect 136 

the mother and neonate (41)(as reviewed in (42)). From the data available, it remains unclear 137 

what neuroendocrine mechanisms in the human maternal brain underlie the changes in HPA 138 

reactivity across the perinatal period. Specifically, how the perinatal changes in concentrations of 139 

cortisol and placental CRH (pCRH) affect the regulatory regions of the HPA axis and the ability 140 

of the maternal HPA axis to respond to stress remains to be determined. For example, the down 141 

regulation of hypothalamic CRH from the PVN during gestation, as described above, may be due 142 

to strong negative feedback of the elevated circulating cortisol concentrations. As it is unlikely 143 

that pCRH crosses the blood brain barrier from the circulation (31), therefore the blunted HPA 144 

response to stress may be due to elevated concentrations of cortisol reaching the brain and 145 

changes in GR density in the hippocampus. However, any alterations at the level of the PVN, 146 

prefrontal cortical areas, or additional brain regions via pregnancy-related cortisol concentrations 147 

or lack of CRH release have not been well defined in humans. 148 

During parturition there is a marked increase in cortisol, particularly during a vaginal 149 

delivery as compared to C-section (23,43,44). This increase in cortisol at delivery is a response 150 

to the intensity of labor and is likely essential for preparing the neonate for the outside world. 151 

Then, with the delivery of the placenta, the source of pCRH is removed. Plasma CRH levels 152 

return to normal, pre-pregnancy, concentrations within 15 hours of delivery (45). Cortisol also 153 

dramatically decreases in the days and weeks postpartum (46) contributing to a dramatic shift in 154 

HPA axis regulation (6).  155 
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It is interesting to note that glucocorticoid levels differ with maternal experience in both 156 

humans and rodent models. For example, multiparous women show a smaller magnitude of 157 

change in circulating cortisol levels postpartum compared to primiparous women (47) and 158 

biparous female rats have less pronounced changes in corticosterone and CBG levels compared 159 

to age-matched primiparous females (48). Others report that parity and feeding type (lactation vs 160 

bottle feeding) play a role in cortisol levels and HPA function postpartum such that breastfeeding 161 

multiparous mothers show reduced cortisol levels and reduced cortisol responsiveness to 162 

psychology stress compared to non-breastfeeding multiparous mothers (49,50). In this study, 163 

feeding type did not affect cortisol levels of primiparous mothers (49,50). This suggests that 164 

maternal experience may act to further alter the maternal HPA axis. This is perhaps not 165 

surprising given that glucocorticoids play an important role in the initiation and maintenance of 166 

maternal care-giving behaviors, particularly in primiparous mothers. For example, Fleming et al 167 

(1997) report that first-time mothers with elevated cortisol concentrations are more attracted to 168 

their own infant's body odor (51). In rodents, corticosterone is important for the pup retrieval, 169 

maternal memory, and maintenance of maternal care (52-54). Thus maternal experience alone 170 

may be an important regulator of the HPA axis during the postpartum period and, perhaps, 171 

during pregnancy.  172 

  173 

HPA and Perinatal Mood Disorders 174 

As Pariante and Lightman (2008) point out in their review focused on the HPA axis and 175 

major depression: “Considering its role at the interface between stress and brain functioning, it is 176 

perhaps not surprising that the HPA axis has been found abnormal in psychiatric disorders, and 177 

in particular in major depression.” (55). But to truly understand how the HPA axis appropriately 178 
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responds to stress and initiates, adapts, and maintains homeostasis, several factors must be 179 

considered. In the brain the response to stress is modulated by the distribution and localization of 180 

the two types of receptors, MR and GR, and their affinity for glucocorticoids, the release pattern 181 

of glucocorticoids (circadian and ultradian), circulating CBG, 11β-HSD concentrations and 182 

activity, and alterations in transcriptional regulators (56). These factors determine how quickly 183 

neurons will respond to cortisol. There are a wide range of potential mechanisms - genetic, 184 

epigenetic, inflammatory, microbial, biochemical - regulating the HPA axis that may result in 185 

individual vulnerability to depression or anxiety (57-61).     186 

The important thing to point out is that a majority of studies to date that link the HPA 187 

axis with major depression (and those included in the review above) have been conducted in 188 

young male humans and rodents. The female brain is grossly understudied. This sex/gender bias 189 

in the literature is especially problematic given the differences between males and females, 190 

particularly with regards to gonadal steroid effects on the HPA axis (62), HPA responsiveness 191 

and female vulnerability to stress-related mental health concerns (63).  192 

Even without a detailed knowledge of the HPA axis in pregnancy and the postpartum 193 

period we do know that the dysregulation of the HPA axis is often implicated in mental illness in 194 

men and women; a recent meta-analysis shows that women with major depression or an anxiety 195 

disorder have blunted cortisol stress responses (64), and increased cortisol awakening response 196 

(CAR) is often predictive to increased vulnerability of depression (13,65). The maternal brain, 197 

which is exposed to extreme changes in steroid hormones and HPA axis functionality, is even 198 

less understood but potentially far more complex and prone to dysregulation. Thus, dysregulation 199 

of the HPA axis seems a likely candidate for the onset of perinatal depression and anxiety.    200 
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When talking about rates of maternal mental illness rates it should be noted that 201 

psychiatric admissions for women during the early postpartum period are higher than at any 202 

other time in a woman’s life and that suicide is the leading cause of death in pregnant and 203 

postpartum women (9,58). The perinatal period is also a time when a significant number of 204 

women suffer from elevated depression and/or anxiety. Up to 15% of women in industrialized 205 

countries will suffer from perinatal depression (PND) (66-68) and rates of PND can be 2 to 3 206 

times higher in developing countries (69). Four to twenty percent of women will experience 207 

mood disorders during pregnancy, the postpartum, or throughout the perinatal period (70,71). 208 

Anxiety disorders during the perinatal period are nearly as prevalent as PND (66,72), however 209 

much less research has focused on the endocrinology of perinatal anxiety in women.  For the 210 

purposes of this mini review, we focus on the HPA axis in PND.  211 

The symptom profile of PND includes persistent factors such as sad mood, 212 

restlessness/agitation, and impaired concentration as well as a major depressive episode during 213 

pregnancy or the recent postpartum (73), resembling that of a major depressive disorder 214 

experienced at other times in life. PND is diverse, with up to 5 distinct subtypes being evident 215 

such as severe anxious depression, moderate anxious depression, and anxious anhedonia based 216 

on the type of symptoms, time of onset and severity (74). Thus, the profile of PND can be 217 

markedly different from woman to woman and the etiology, detection and treatment can vary 218 

widely. PND is often predicted by a prepartum history of either depression or anxiety, a number 219 

of psychosocial risk factors including abuse/trauma, family history of psychiatric illness, and 220 

discontinuing antidepressant medication during gestation (8,75). If left untreated PND can have 221 

detrimental effects on the mother leading to increased risk of substance abuse, poor nutrition, 222 

marital conflict, further episodes of depression and, in extreme cases, suicide (76,77). Poor 223 
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maternal mental health is also associated with a host of negative outcomes in children such as 224 

preterm birth, decreased cognitive ability, increased risk of psychiatric illness and altered social 225 

behaviors (77-79).  226 

Despite its prevalence and pervasive costs for the mother, child and family, our 227 

understanding of the biological bases of perinatal mood disorders is limited (80). As mentioned 228 

previously, the HPA axis may be a key player in PND as it is strongly implicated in depression at 229 

other times in life, and its significant plasticity during the perinatal period may increase a 230 

mother’s vulnerability to mental illness. But what do we really know about the HPA and PND?  231 

In 2006 Krammer et al proposed that depression during pregnancy could be characterized 232 

by high levels of cortisol but depression during the postpartum period would be characterized by 233 

low levels of cortisol. They further hypothesized that depression during pregnancy would be 234 

more melancholic and depression during the postpartum period would be more atypical (81). 235 

This was an interesting idea that mapped on to the inherent physiological changes that occur in 236 

the HPA axis in pregnancy and the postpartum, as discussed above. Now, 12 years later, recent 237 

reviews of the studies that have taken place over the past 20 years investigating how the HPA 238 

axis may be linked to PND have shown that 1) often no relationship exists between cortisol and 239 

depressive symptoms during the perinatal period in women, 2) of the studies that do show a 240 

relationship between the HPA and PND it appears that indeed depression in pregnancy is 241 

characterized by very different HPA profiles from those of depression during the postpartum 242 

period (6,7). During pregnancy a recent systematic review on antepartum depression and cortisol 243 

levels shows that of the studies reporting an association between maternal depressive symptoms 244 

and cortisol, elevated cortisol concentrations during the 2nd and 3rd trimester are most often 245 

associated with antepartum depressive symptoms (6,7). Others report that maternal morning 246 
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cortisol levels are reduced in pregnant women with major depression as diagnosed by a clinician 247 

(82). In line with this, O’Connor et al (2014) note that pregnant women with major depression 248 

have significantly lower cortisol levels at waking but overall elevated average cortisol levels 249 

compared to controls (83). Interestingly CBG, which is responsible for free cortisol levels in 250 

serum (18), and has also be implicated in depression (84) but less well studied with regards to 251 

PND. Recent research has shown that both total serum levels of cortisol and CBG are negatively 252 

associate with depression symptoms in late pregnant women such that elevated levels of total 253 

cortisol or CBG are related to lower scores of depression during late pregnancy (43).  254 

During the postpartum period there is a fall in cortisol and CRH in the days and weeks 255 

after birth. This decrease in cortisol and CRH may be linked to the onset of postpartum 256 

depression. Of the studies that do show a relationship between changes in the HPA axis and 257 

postpartum depression it is lower cortisol levels that are evident in women with postpartum 258 

depression (up to one year postpartum)(6,82,85,86). Recently Glynn et al (2013) proposed that 259 

prenatal HPA axis dysregulation may be predictive of postpartum depression with elevated or 260 

accelerated pCRH trajectories during gestation being associated with an exaggerated postpartum 261 

drop in cortisol leading to postpartum depression (87,88). Antepartum and postpartum 262 

depression are often in continuum and a recent study has shown that pregnant women with 263 

consistently elevated salivary cortisol levels have increased ante- and post-natal self-reported 264 

mood symptoms (89). This points to the value of longitudinal research in determining the link 265 

between the HPA axis and maternal mood. Although these findings show that HPA axis 266 

dysregulation is linked to PND, more research is needed to determine how depression during 267 

pregnancy and/or the postpartum period is related to different factors of the HPA axis. 268 
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Furthermore, this future research needs to take into account the severity of depression, 269 

depression subtype and time point during pregnancy or postpartum.  270 

One way to understand how the HPA axis is dysregulated is to assess how effective 271 

treatments alter its output via cortisol concentrations or HPA responsiveness. Although limited, 272 

some research shows that mothers with a high risk of developing depression who attend 273 

cognitive behavior therapy (CBT) classes have lower salivary cortisol levels and display lessened 274 

stress reactivity after a few sessions of CBT compared to non-treated high risk mothers (90,91). 275 

Others have shown that yoga or a support group can reduce depression, anxiety and anger in 276 

pregnant women as well as significantly reduce salivary cortisol levels (92). SSRIs are often the 277 

first-line of treatment for PND (2,93,94) and even though SSRIs can alter the HPA axis in some 278 

individuals with depression (95,96) and animal models are pointing to a role of SSRIs in 279 

attenuating the stress response during the postpartum period (97), clinical research has not 280 

clearly shown an effect of SSRIs on the HPA axis in women during the perinatal period (43).  281 

Although there are significant differences between pregnancy and the postpartum period 282 

in humans and rodent models, rodents, and other animal models, can be valuable tools to 283 

manipulate and understand the contribution of the HPA axis to perinatal depression. A growing 284 

body of rodent research is showing that stress, or activation of the HPA axis prior to, or during, 285 

gestation can be a valuable model of postpartum depression. This activation of the maternal HPA 286 

axis prior to parturition can alter the HPA axis postpartum by decreasing basal corticosterone 287 

(similarly to what is seen in women with postpartum depression) and lead to increased 288 

depressive- and anxiety-like behavior in the rat dam postpartum (97-103). More recent research 289 

has shown that dysregulation of the HPA axis at the level of CRH neurons in the PVN 290 

(specifically the loss of K+/Cl-co-transporter) is sufficient to induce postpartum behavioral 291 
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profiles modelling postpartum depression suggesting a potential target for future treatments 292 

(104).  293 

As with research on the link between HPA activation and depression during pregnancy in 294 

women, rodent models are not clear on how activation of the HPA axis during gestation affects 295 

depressive-like behavior in the pregnant female. We do know that repeated stress during 296 

gestation can lead to decreased basal and stress-induced corticosterone levels in late pregnancy 297 

and decreased GR density in the CA3 region of the hippocampus (105,106). How these changes 298 

link to depressive- or anxiety-like behaviors in rodents during pregnancy remain to be 299 

determined.  300 

 301 

Future directions 302 

There is much more research that is needed in order to understand the link between the HPA axis 303 

and maternal mental illness. First, the mechanisms underlying HPA axis regulation and 304 

dysregulation in the human brain during pregnancy and postpartum are relatively unknown. 305 

Much of what we know about the perinatal period at the neural level comes from rodent models 306 

(e.g. (42)). However, there are marked differences between gestation in humans and rodents 307 

(namely the rodent placenta does not produce pCRH and therefore does not exert effects on the 308 

perinatal HPA axis). In addition, we still have much to learn about the basic sex differences in 309 

the regulatory pathways feeding into the HPA axis (see review in (63,107), but evidence is 310 

mounting that the hormone fluctuations of the estrous/menstrual cycle may underlie female 311 

vulnerability to mental illness. Given that the perinatal period exposes females to even more 312 

extremes in hormone fluctuations, the connection between the HPA axis during the perinatal 313 

period and maternal mental illness should be an important target for future research.  314 
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Since our ability to study the human brain is limited one theoretical approach that may be 315 

valuable in understanding the relationship between the HPA axis, stress, hormone fluctuations 316 

and maternal mental illness is The Reactive Scope Model. This model expands the Allostasis 317 

Model for stress, and considers the delicate balance of maintaining homeostasis in the face of 318 

adaptive change (108). Pregnancy itself is not a disease state, yet it makes the body more 319 

vulnerable to a range of pathologies, from mood disorders to hypertension (109), diabetes (110), 320 

or cardiovascular disease (109). In the Reactive Scope Model, the range between 321 

Predictive/Reactive Homeostasis (adaptive - normal, non-pathological state) and Homeostatic 322 

Overload (maladaptive - pathological) becomes smaller when the physiological mechanisms 323 

maintaining homeostatic balance increasingly compensate for pressure on the system - elephants 324 

maintaining the balance on a seesaw rather than mice maintaining the balance. As the range 325 

between adaptive and maladaptive gets closer together, the likelihood of the body to ‘tip’ into 326 

pathology increases, the vulnerability increases. The third and “fourth” trimester (the first days 327 

and months into postpartum) represent a unique homeostatic state in a woman’s body - in 328 

balance yet pushed to an extreme. Considering the HPA axis specifically, when additional 329 

predispositions are added that make the threshold even smaller, any activation beyond the normal 330 

functioning system such as an acute stress from any number of sources - a difficult birth, 331 

challenges with breastfeeding, adjusting to new motherhood - may push the maternal HPA axis 332 

into a state of overload and dysregulation. Applying this model allows researchers, clinicians, 333 

women, and their care team to consider the benefits of more “holistic” approaches to decrease 334 

the likelihood of her activating the stress pathways. Perhaps this is the underlying reason for the 335 

growing evidence that mindfulness, labor support and postpartum support have a positive effect 336 

on maternal mental health (111-114).  337 
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Clinical studies often rely on peripheral biomarkers of the HPA axis, of which cortisol is 338 

the most popular due to its detectability in saliva, hair or urine. However, AVP and CRH (during 339 

pregnancy) can also be detected from serum samples and it may be that the relationship of these 340 

factors to each other, or their change across time, is more important than the change in any one 341 

factor at any given time point. Previous research suggests that the progesterone to estradiol ratio 342 

across parturition is important for maternal attachment (115) and thus it may be that the AVP-343 

Cortisol ratio or Cortisol-CRH ratio may be a better indicator of PND. That being said, it could 344 

also be the change over time of one, or a few, of these HPA biomarkers is a better indicator of 345 

PND. For these type of studies to be performed serum or plasma samples would have to be 346 

collected regularly and the relationship of these factors with their binding globulins would need 347 

to be accounted for.  348 

Functional studies of the HPA axis prior to pregnancy may also be valuable in detecting 349 

how the HPA axis during pregnancy or the postpartum period may increase the susceptibility to 350 

the development perinatal depression or anxiety. Although there is limited research in this area, 351 

promising work by Bloch et al (2005) shows that women with a history of postpartum depression 352 

(PPD) have enhanced sensitivity at the level of the pituitary-adrenal axis to CRH stimulation 353 

tests (116). Thus, HPA stimulation tests may be valuable tools to investigate the risk of 354 

dysregulation of the HPA axis and how it relates to perinatal mental illness.  355 

It should also be noted that the variability amongst individuals, the interplay between 356 

systems, and how homeostasis is maintained during pregnancy from the endocrine pathways to 357 

the level of cellular signaling is far too complex (and grossly understudied) for simple solutions 358 

to a growing health concern: 1 in 5 women will have a mental illness during the perinatal period! 359 
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We need more resources dedicated for research on maternal mental illness to effectively treat and 360 

prevent the effects of these illnesses on mother, child and family.  361 

 362 

Conclusions 363 

The first recorded accounts of postpartum depression occurred in the 11th or 13th century where it 364 

was stated that “if the womb is too moist, the brain is filled with water, and the moisture running 365 

over the eyes, compels them to involuntarily shed tears” (117). Although we have moved 366 

forward in our understanding of perinatal depression, we still are in our infancy as to how a 367 

mother’s physiology may be involved in her mental health during the perinatal period.  368 

 369 

  370 
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Figure Legend 371 

 372 

 373 

Figure 1. Schematic representation summarizing the key components of the hypothalamic-374 

pituitary-adrenal (HPA) axis in (A) non-pregnant and (B) pregnant humans. Cortisol release by 375 

the hormonal cascade along the HPA axis regulates the axis in a classic negative feedback loop, 376 

acting through glucocorticoid receptors (GR) and both GR and mineralocorticoid receptors (MR) 377 

in the hippocampus. Due to the addition of the placenta during gestation, the dynamics of this 378 

system greatly change. As displayed by thicker lines, and larger font, cortisol increases due to 379 

positive feedback loop via placental corticotropin releasing hormone (pCRH) stimulating the 380 

anterior pituitary and possibly the adrenal directly. Most of what is known about the dynamics of 381 

the HPA axis and the potential dysregulation of this axis in relation to mental illness has come 382 

from studies conducted in young male humans and rodent models. Given the very different 383 

dynamics of the female HPA axis, especially during pregnancy, many of the points of 384 
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dysregulation of the HPA axis related to perinatal mental illnesses, such as postpartum 385 

depression, remain to be investigated and are represented by question marks and/or dotted lines. 386 

11β-HSD - 11β-hydroxysteroid dehydrogenase, ACTH - adrenocorticotropin releasing hormone, 387 

AMY - amygdala, AVP – arginine vasopressin, BBB-blood brain barrier, CBG – corticosteroid 388 

binding globulin, pCRH – placental corticotrophin releasing hormone, E2 - estradiol, GR – 389 

glucocorticoid receptor, MR – mineralocorticoid receptor, P4 - progesterone, PFC – prefrontal 390 

cortex, PVN-paraventricular nucleus. 391 

  392 
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