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Abstract. KaSa is a static analyzer for Kappa models. Its goal is two-
fold. Firstly, KaSa assists the modeler by warning about potential issues
in the model. Secondly, KaSa may provide useful properties to check that
what is implemented is what the modeler has in mind and to provide a
quick overview of the model for the people who have not written it.
The cornerstone of KaSa is a fix-point engine which detects some pat-
terns that may never occur whatever the evolution of the system may be.
From this, many useful information may be collected: KaSa warns about
rules that may never be applied, about potential irreversible transforma-
tions of proteins (that may not be reverted even thanks to an arbitrary
number of computation steps) and about the potential formation of un-
bounded molecular compounds. Lastly, KaSa detects potential influences
(activation/inhibition relation) between rules.

In this paper, we illustrate the main features of KaSa on a model of the
extracellular activation of the transforming growth factor, TGF-b.

Contribution. Jéroéme Feret (2010-present) and Kim Quyén Ly (2015-2017) are
the main contributors of KaSa. KaSa is integrated within the Kappa modeling
platform whose main architect is Pierre Boutillier. In particular, Pierre Boutillier
has integrated KaSa in the user interface of Kappa which may be used either
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ITMO Plan Cancer 2014 (TGFSysBio project). The views, opinions, and/or findings
contained in this article are those of the authors and should not be interpreted
as representing the official views or policies, either expressed or implied, of ANR,
DARPA, the U. S. Department of Defense, or ITMO.
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Fig. 1. Two rules. (left) Two proteins may bind. (right) The protein on the left may

phosphorylate the right site of the protein on the right.

online, or locally. The model of the extracellular activation of the transforming
growth factor, TGF-b, has been assembled by Jean Coquet (2012-2017), Nathalie
Théret (2012-present), Pierre Vignet (2016-present), and Ferdinanda Camporesi
(2016-present). Jérome Feret has written the paper.

1 Introduction

Kappa may be used to describe systems of mechanistic interactions between
proteins by the means of site-graph rewriting rules. Each node in graphs denotes
an instance of a protein equipped with a kind and a finite set of identified
sites. Rules may bind/unbind sites pair-wisely to establish/break links between
proteins. Some sites may also have an internal state in order to specify if they
are phosphorylated, methylated, and so on, so forth. We give, in Fig. [I} two
examples of rules in Kappa.

Kappa is context-free: only the information that matters for a given inter-
action to happen has to be mentioned in rules. This feature is crucial to scale
up to the size of large models. Thus Kappa provides the opportunity to design
arbitrarily sophisticated models. These models may involve proteins with mul-
tiple phosphorylation sites, scaffolds, concurrency for shared resources, different
time- and concentration scales, large variabilities in the kinds of molecular com-
pounds, and non-linear feed-back loops. In general, we want to understand how
the collective behavior of proteins may emerge from the mechanistic interactions
between individual proteins. Yet, there are no modeling wizards and before in-
vestigating the long term behavior of a model, it is worth wondering whether
the implementation matches faithfully our modeling assumptions. In the case of
models written by others, extracting quickly some basic properties about models
is also helpful to understand what the models are doing.

This motivates the use of formal methods. KaSa is a static analyzer that
abstracts the set of reachable states of models, and then uses this information
to collect insightful properties. In particular, KaSa may warn about rules that
may never be applied, about potential definitive transformations of proteins and
about the potential formation of unbounded molecular compounds. Lastly, KaSa
detects the potential influences (activation/inhibition relation) between rules.

In this paper, we illustrate the main features of KaSa on a model of the ex-
tracellular activation of the transforming growth factor TGF-b, a protein which
controls cell homeostasis in normal tissue, but promotes the development of fi-
brosis and cancer [6]. There has been a nice interplay between the design of
the static analysis and the one of this model. On the first hand, KaSa has been
helpful to curate the model, on the second hand, we have extended KaSa to



cope with new properties of interest that we have identified during the modeling
process.

2 Technical description

Development. The development of KaSa has started in 2006, as a follow up of
Complx, a static analyzer that had been designed by Plectix BioSystems (Cam-
bridge, MA, USA). KaSa is now around 68,000 lines of OCaml [7] (excluding the
front-end). It offers 53 command-line options. Jéréme Feret (2010-present) and
Kim Quyén Ly (2015-2017) have been being the main developers.

Distribution. KaSa belongs to the Kappa modeling platform, which is completely
open source www.kappalanguage.org. KaSa is partially integrated within the
Kappa user interface, In particular, all the functionalities that are described in
this paper, but local traces, are available on the fly while editing a model.

The development of the modeling platform is hosted on github https://
github.com/Kappa-Dev/KaSim. An app is provided for MacOs and Windows.
The nightly-builds of the development version may be downloaded at https://
tools.kappalanguage.org/nightly-builds/. The modeling platform is also
available as an opam package. With a properly installed opam, the instruction
opam pin add --dev KaSim will compile all necessary dependencies as well as
the current master branch of the git repository.

The manual may be consulted online at: https://tools.kappalanguage.
org/docs/KaSim-manual-master/KaSim_manual.htm (see Chp. 6).

3 Main functionalities

Now we browse the main functionalities of KaSa.

Note that the results computed by KaSa depend all on the choice of the initial
state, or more precisely on the set of the proteins and molecular compounds
that may be present in the initial state independently of their concentration.
KaSa is purely qualitative: its results depend neither on rule rates, nor on initial
concentrations.

Reachability analysis. The cornerstone of KaSa is its reachability analysis. KaSa
performs a mutual induction over some families of patterns, so as to prove that
some of them may never occur in reachable states. Three families of patterns
are considered [3]. The first one detects relations among the state of sites within
each protein instance. The second one targets the relations between the state of
sites in the proteins that are directly linked. The third one focuses on detecting
whether or not a protein may be bound twice to the same instance of a protein.
KaSa outputs a list of refinement lemmas. Each one consists in a precondition,
that is a pattern, and a post-condition, that is a list of refinements of this pattern.
The formal meaning of a refinement lemma is that whenever an instance of the
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Fig. 2. Two refinement lemmas. (left) When TGFBI1 is in its latent form, its site a
is necessarily free. (right) When T'GFBI has its two sites bound, it is bound twice to
the same instance of the protein THSBSI. In each of these refinement lemmas, the
refinement list is made of a single element. In more complicated cases, there maybe a
choice of several patterns for refining the precondition.

precondition is found in a reachable state, this instance may be extended to an
instance of a pattern in the post-condition.

In Fig. 2l we give some of the properties that are found in our case study.
The analysis infers that in its latent form, TGFBI has always its site a (in pink)
free. KaSa also detects that TGFBI may be bound twice to the same instance
of the protein THBS1, but never to different instances simultaneously.

Dead rule detection. A rule the left hand side of which is in contradiction with
the refinement lemmas cannot be applied whatever the evolution of the system is.
There may be various reasons for this. Sometimes, several names have been used
to denote the same protein. Sometimes, proteins have structural invariants that
prevents the application of a rule. In our case study, dead rules have helped in
identifying some missing parts in models, hence blocking the signaling pathways.
The model has been completed after having consulted the literature.

Influences among rules. Rules may have a positive or a negative influence on
each others. There is a positive (resp. negative) influence when an application of
a given rule may potentially create (resp. remove) an instance of the left hand
side of another rule. Influences provide an overview of the causality of the model.

We give an example in Fig. |3l We consider a protein with two phosphory-
lation sites. The left site may be freely phosphorylated and dephosphorylated,
whereas the right site may get phosphorylated only when the left one is already
phosphorylated. Thus the phosphorylation of the left site has a positive influ-
ence on the phosphorylation of the right one, while the dephosphorylation of
the left site has a negative influence on the phosphorylation of the right one, as
indicated in the influence map. This notion of influence is similar to the one that
is used in Gene regulatory tools such as GinSIM [§] or reaction networks tools
such as Biocham [2], except that, in Kappa, influences describe to which extent
rules may influence each other, and not whether the variation of concentration
of each molecular compound may influence the concentration of the other ones.

Since there are many rules, we use a hierarchy of abstractions to avoid the
brute force approach which may not scale to large models. Firstly, we compute
indirect influences. Indirect influences focus on the states of sites independently.
There is a positive indirect influence whenever a rule may take a site into a state
that is required by another rule to apply. Secondly, we compute direct influ-
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Fig. 3. Four rules (left) and the corresponding influ-  Fig. 4. A local trace. In pro-
ence map (right). In rule ry, the right site may be tein MMP2, the passage in
phosphorylated only if the left site is. As a conse- the active form is definitive
quence the rule 7, inhibits the rule r,,, and the rule  and it prevents the site CDB
rp activates the rule 7. to bind the protein COL.

ences. Direct influences are obtained by filtering indirect influences by checking
that both rules have compatible requirements about their context of application.
Thirdly, we refine direct influences further, by checking that the unifying context
of both rules cannot be proved unreachable by our reachability analysis.

Local transition systems. It is sometimes useful to understand how a protein may
go from one configuration to another. Thus KaSa computes a transition system
for each kind of proteins of the model [4]. This abstraction completely ignores the
context of the protein: the behavior of each protein is described independently
without considering the state of the proteins it is attached to. Local traces do not
intend to provide information about the collective behavior of proteins (i. e. their
concentration): instead it focus on each protein individually.

Non weakly reversible transitions. Most mechanisms may be reverted in one or
more steps of computation. This is crucial so that resources may be used several
times (for instance an enzyme is expected to activate several instances of its
substrate, thus it has to detach from it). However modelers often see signaling
as cascades of interactions that push forward the signal.

Tarjan’s strongly connected components decomposition algorithm is useful
to detect which computation steps will never be reverted. Often, non weakly
reversible transitions come from missing mechanisms and the model has to be
completed. Sometimes, they come from a definitive degradation of a protein. In
this case, the property is helpful to understand the behavior of this protein.

In the first versions of our case study, most rules about unbinding were miss-
ing. Our analysis has detected that corresponding binding steps were definitive
and the model had to be completed accordingly. Once this done, all the remain-
ing definitive transitions are related to the activation of the proteins TGFBI,
MMP2, and MMP14, which is an irreversible process. In Fig. [4] we give a local
trace associated to the protein MMP2.
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egfr_net 39 17 0 0 0 764 280 280 0 0 N/A N/A[0.02 0.04 0.02 0.04 0.02 0.02 0.03 0.02]0.05
feeri_fyn 46 21 0 8 8 758 304 304 1 0 8 N/A|0.04 0.05 0.03 0.10 0.04 0.04 0.06 0.04|0.10
feeri_fyn_lig 48 21 0 8 8 760 306 306 1 0 8 N/A|0.04 0.05 0.03 0.09 0.04 0.05 0.06 0.05|0.10
feeri_fyn_trimer 362 22 36 96 96 59971 7405 6763 1 0 10 N/A|0.53 4.63 0.66 2.15 0.54 0.54 0.58 0.54|2.24
feeri_fyn_gamma2 59 21 0 0 0 1464 518 518 1 0 8 N/A|0.06 0.10 0.04 0.15 0.06 0.06 0.08 0.06|0.16
feeri_fyn_ji 36 16 0 0 0 53 231 231 1 0 8 N/AJ0.030.020.010.060.030.030.050.03/0.07
feerifyn_lyn_745 40 18 2 2 2 620 255 243 1 0 8 N/A|0.04 0.04 0.02 0.07 0.04 0.04 0.05 0.04]0.08
feeri_fyn_trimer 192 19 0 0 0 21557 2536 2536 1 0 10 N/A|0.24 1.60 0.24 0.81 0.24 0.24 0.27 0.24|0.86
machine 220 72 7 17 10 5319 2873 2735 0 0 N/AN/A0.77 0.13 0.10 1.05 0.76 0.77 0.97 0.77|1.22
ensemble 233 8 0 1 1 4841 2936 2936 0 0 N/AN/A|0.620.150.13 0.82 0.61 0.63 0.91 0.62|1.14
korkut (2017/01/13) {3916 1289 1610 2016 2016 75563 75563 39280 1 1 131 131|14 249271 16 14 14 14 14|18
korkut (2017/02/06) |5750 2571 884 1397 1397 81412 7547255101 1 1 2693 2687| 94 4.014.16 94 96 115 99 114|119
TGF (V19) 97 107 10 153 53 3471 3009 2631 1 1 78 74 (0.24 0.09 0.09 0.47 0.23 0.25 0.37 0.25(0.63
TGF (2018/04/19) |292 112 0 314 28 6040 5504 5504 1 1 108 108{0.890.18 0.19 1.36 0.86 0.90 1.25 0.92|1.73
BigWnt (2015/12/28)| 356 134 1 833 14 5974 5271 5264 1 1 49 49 (3.99 0.16 0.16 4.47 3.98 3.96 125 4.00|127
BigWnt (2017/03/22)|1486 182 12 61 16 1091187 38110 37958 1 1 84 80 |15 26 5.15 25 15 15 260 15 |286

Fig. 5. Benchmarks (performed on a MacBook Pro, 3.3 Ghz intel Core). For each
model, we provide the number of rules, information about what has been discovered
by KaSa and about analysis time.

Detection of unbounded polymers. Knowing which complexes may grow arbitrar-
ily is important. Some models may assemble macro-molecules. But sometimes
the presence of unbounded polymers is a side-effect of the lack of specification
of the potential conflicts between protein interactions.

Unbounded polymers may only arise whenever a sequence of proteins may
be repeated indefinitely in a reachable molecular compound. Such a sequence
necessarily matches with a cycle in the oriented graph in which nodes are the
different kinds of bonds between proteins (each kind bond is considered twice,
one for each direction) and the edges connect two (oriented) bonds if the target
of the first bond and the source of the second one are two different sites in a
same kind of protein. We also use Tarjan’s algorithm to detect these cycles.

This feature is available at two accuracy levels. At syntactic level, every
kind of bonds occurring in the initial state or in the right hand side of a rule
is considered. A more precise analysis is obtained by filtering out the pairs of
bonds for which the corresponding pattern is proved unreachable.

In our case study, KaSa detects a large strongly collected component related
to the formation of the Fibronectin matrix (which may indeed grow arbitrarily).

4 Benchmarks

We apply KaSa to several Kappa models (e. g. see Fig. . The first eight models
are translations in Kappa of some of the models which are provided with the



BNGL distribution [I]. The models ‘machine’ and ‘ensemble’ are two versions of
the MAPK signaling pathways published by Eric Deeds and Ryan Suderman [9].
Both versions of the model ‘korkut’ describe the Ras signaling pathways. They
have been assembled by John Bachman and Benjamin Gyori (Sorger lab, Big-
Mechanisms DARPA Project), following a three steps procedure [B]: automatic
natural language processing, automatic assembling into Kappa, and human cu-
ration. We analyze two versions of the model of the extracellular matrix of the
protein TGF-b that we have used to illustrate the different functionalities of
KaSa. The assembling has been done by hand, by inspection of the literature
and its curation has been assisted by KaSa. Lastly, we analyze two versions of
the Wnt signaling pathway, written by Héctor F. Medina Abarca (Fontana Lab,
Big-Mechanisms DARPA Project). This model has also been assembled by hand
by inspection of the literature. Some scripts have been used to refine the kinetics
of rules according to some contextual information about the proteins.

For each model, we give the number of constraints, of detected dead rules, of
detected non weakly reversible transitions, of the rules that are involved in those
transitions, of potential influence relation (in each accuracy mode), of strongly
connected components that may occur in polymers (in both modes). Then, we
give the CPU time used for each of these functionalities. The last column gives
the CPU time of the whole analysis, with all functionalities set to the maximal
accuracy level. It is worth noting that the CPU time required to compute the
direct influence map, is sometimes longer than the one to compute the indirect
one. Indeed, dumping an imprecise result may take longer than filtering this
result thanks to a more costly but more accurate analysis.
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