J. M. Dudley, G. Genty, and S. Coen, Supercontinuum generation in photonics crystal fiber, Rev. Mod. Phys, vol.78, pp.1135-1184, 2006.

A. Schliesser, N. Picqué, and T. W. Hänsch, Mid-infrared frequency combs, Nat. Photonics, vol.6, pp.440-449, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01805327

J. Swiderski and M. Michalska, Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier, Laser Phys. Lett, p.35105, 2013.

K. Yin, R. Zhu, B. Zhang, T. Jiang, S. Chen et al., Ultrahigh-brightness, spectrally-flat, short-wave infrared supercontinuum source for long-range atmospheric applications, Opt. Express, vol.24, 2016.

J. M. Dudley, G. Genty, and S. Coen, Supercontinuum generation in photonics crystal fiber, Rev. Mod. Phys, vol.78, pp.1135-1184, 2006.

A. Schliesser, N. Picqué, and T. W. Hänsch, Mid-infrared frequency combs, Nat. Photonics, vol.6, pp.440-449, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01805327

, Appl. Sci, vol.8, p.1637, 2018.

J. Swiderski and M. Michalska, Mid-infrared supercontinuum generation in a single-mode thulium-doped fiber amplifier, Laser Phys. Lett, vol.10, p.35105, 2013.

K. Yin, R. Zhu, B. Zhang, T. Jiang, S. Chen et al., Ultrahigh-brightness, spectrally-flat, short-wave infrared supercontinuum source for long-range atmospheric applications, Opt. Express, vol.24, 2016.

J. Laegsgaard and H. Tu, How long wavelengths can one extract from silica-core fibers?, Opt. Lett, vol.38, pp.4518-4521, 2013.

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy et al., Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructuered Sulfide and Tellurite optical fibers, Opt. Express, vol.20, pp.27083-27093, 2012.

P. Domachuk, N. A. Wolchover, M. Cronin-golomb, A. Wang, A. K. George et al., Over 4000 nm Bandwidth of Mid-IR Supercontinuum Generation in sub-centimeter Segments of Highly Nonlinear Tellurite PCFs, Opt. Express, vol.16, pp.7161-7168, 2008.

F. Théberge, J. Daigle, D. Vincent, P. Mathieu, J. Fortin et al., Mid-infrared supercontinuum generation in fluoroindate fiber, Opt. Lett, vol.38, pp.4683-4685, 2013.

G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari et al., Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber, Appl. Phys. Lett, vol.95, 2009.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont et al., Mid-infrared supercontinuum covering the 1.4-13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre, Nat. Photonics, vol.8, pp.830-834, 2014.

M. El-amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret et al., Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers, Opt. Express, vol.18, pp.4547-4556, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00469701

T. Cheng, Y. Kanou, D. Deng, X. Xue, M. Matsumoto et al., Fabrication and characterization of a hybrid four-hole AsSe 2 -As 2 S 5 microstructured optical fiber with a large refractive index difference, Opt. Express, vol.22, pp.13322-13329, 2014.

R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman et al., Mid-infrared supercontinuum generation from 1.6 to >11 um using concatenated step-index fluoride and chalcogenide fibers, Opt. Lett, vol.43, pp.296-299, 2018.

W. Yang, B. Zhang, G. Xue, K. Yin, and J. Hou, Thirteen watt all-fiber mid-infrared supercontinuum generation in a single mode ZBLAN fiber pumped by a 2 µm MOPA system, Opt. Lett, vol.39, pp.1849-1852, 2014.

J. Troles, L. Brilland, C. Caillaud, and J. L. Adam, Original designs of chalcogenide microstuctured optical fibers, Adv. Device Mater, vol.3, pp.7-13, 2017.

J. A. Savage, Optical properties of chalcogenide glasses, J. Non-Cryst. Solids, vol.47, pp.101-116, 1982.

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, High-purity chalcogenide glasses for fiber optics, Inorg. Mater, vol.45, pp.1439-1460, 2009.

M. F. Churbanov, High-purity chalcogenide glasses as materials for fiber optics, J. Non-Cryst. Solids, vol.184, pp.25-29, 1995.

T. A. Birks, J. C. Knight, and P. S. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett, vol.22, pp.961-963, 1997.

G. Renversez, F. Bordas, and B. T. Kuhlmey, Second mode transition in microstructured optical fibers: Determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size, Opt. Lett, vol.30, pp.1264-1266, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00079751

J. Ballato, H. Ebendorff-heidepriem, J. Zhao, L. Petit, and J. Troles, Glass and Process Development for the Next Generation of Optical Fibers: A Review, vol.5, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01517484

C. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud et al., Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers, Opt. Express, vol.25, pp.15336-15347, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01559207

S. Hocdé, C. Boussard-plédel, G. Fonteneau, and J. Lucas, Chalcogens based glasses for IR fiber chemical sensors, Solid State Sci, vol.3, pp.279-284, 2001.

S. Danto, D. Thompson, P. Wachtel, J. D. Musgraves, K. Richardson et al., A comparative study of purification routes for As 2 Se 3 chalcogenide glass, Int. J. Appl. Glass Sci, vol.4, pp.31-41, 2013.

V. S. Shiryaev and M. F. Churbanov, Recent advances in preparation of high-purity chalcogenide glasses for mid-IR photonics, J. Non-Cryst. Solids, vol.475, pp.1-9, 2017.

M. F. Churbanov, V. S. Shiryaev, I. V. Scripachev, G. E. Snopatin, V. V. Gerasimenko et al., Optical fibers based on As-S-Se glass system, J. Non-Cryst. Solids, vol.284, pp.146-152, 2001.

W. H. Kim, V. Q. Nguyen, L. B. Shaw, L. E. Busse, C. Florea et al., Recent progress in chalcogenide fiber technology at NRL, J. Non-Cryst. Solids, vol.431, pp.8-15, 2016.

J. Kobelke, J. Kirchhof, M. Scheffler, and A. Schwuchow, Chalcogenide glass single mode fibres-Preparation and properties, J. Non-Cryst. Solids, vol.256, pp.226-231, 1999.

P. Houizot, F. Smektala, V. Couderc, J. Troles, and L. Grossard, Selenide glass single mode optical fiber for nonlinear optics, Opt. Mater, vol.29, pp.651-656, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00370056

J. Troles, Y. Niu, C. Duverger-arfuso, F. Smektala, L. Brilland et al., Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 µm, Mater. Res. Bull, vol.43, pp.976-982, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00370070

F. Chenard, O. Alvarez, and H. Moawad, MIR chalcogenide fiber and devices, Proceedings of the SPIE Conference on Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XV, vol.9317, p.93170, 2015.

C. Lafond, J. Couillard, J. Delarosbil, F. Sylvain, and P. De-sandro, Recent improvements on mid-IR chalcogenide optical fibers, Proceedings of the SPIE 40th Conference on Infrared Technology and Applications XL, vol.9070, p.90701, 2014.

T. M. Monro, Y. D. West, D. W. Hewak, N. G. Broderick, and D. J. Richardson, Chalcogenide holey fibres, Electron. Lett, vol.36, 1998.

L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles et al., Fabrication of complex structures of Holey fibers in chalcogenide glass, Opt. Express, vol.14, pp.1280-1285, 2006.

L. Person, J. Smektala, F. Chartier, T. Brilland, L. Jouan et al., Light guidance in new chalcogenide holey fibres from GeGaSbS glass, Mater. Res. Bull, vol.41, pp.1303-1309, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00084551

J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, C. M. Florea, P. Pureza et al., Nonlinear properties of chalcogenide glass fibers, J. Optoelectron. Adv. Mater, vol.8, pp.2148-2155, 2006.

L. Brilland, J. Troles, P. Houizot, F. Desevedavy, Q. Coulombier et al., Interfaces impact on the transmission of chalcogenide photonic crystal fibres, J. Ceram. Soc. Jpn, vol.116, pp.1024-1027, 2008.

M. El-amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier et al., Microstructured chalcogenide optical fibers from As 2 S 3 glass: Towards new IR broadband sources, Opt. Express, vol.18, pp.26655-26665, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00608837

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. Nguyen et al., Casting method for producing low-loss chalcogenide microstructured optical fibers, Opt. Express, vol.18, pp.9107-9112, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00494022

P. Zhang, J. Zhang, P. Yang, S. Dai, X. Wang et al., Fabrication of chalcogenide glass photonic crystal fibers with mechanical drilling, Opt. Fiber Technol, vol.26, pp.176-179, 2015.

D. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu et al., Toward all-fiber supercontinuum spanning the mid-infrared, vol.4, pp.1163-1166, 2017.

D. H. Deng, L. Liu, H. T. Tuan, Y. Kanou, M. Matsumoto et al., Mid-infrared supercontinuum covering 3-10 µm using a As 2 Se 3 core and As 2 S 5 cladding step-index chalcogenide fiber, J. Ceram. Soc. Jpn, vol.124, pp.103-105, 2016.

O. Mouawad, J. Picot-clemente, F. Amrani, C. Strutynski, J. Fatome et al., Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers, Opt. Lett, vol.39, pp.2684-2687, 2014.

W. Q. Gao, M. El-amraoui, M. S. Liao, H. Kawashima, Z. C. Duan et al., Mid-infrared supercontinuum generation in a suspended-core As 2 S 3 chalcogenide microstructured optical fiber, Opt. Express, vol.21, pp.9573-9583, 2013.

C. R. Petersen, P. M. Moselund, C. Petersen, and U. Moller, Bang, O. Spectral-temporal composition matters when cascading supercontinua into the mid-infrared, Opt. Express, vol.24, pp.749-758, 2016.

T. L. Cheng, Y. Kanou, X. J. Xue, D. H. Deng, M. Matsumoto et al., Mid-infrared supercontinuum generation in a novel AsSe 2 -As 2 S 5 hybrid microstructured optical fiber, Opt. Express, vol.22, pp.23019-23025, 2014.

P. Toupin, L. Brilland, C. Boussard-pledel, B. Bureau, D. Mechin et al., Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing, J. Non-Cryst. Solids, vol.377, pp.217-219, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00860095

R. Baker, K. D. Rogers, N. Shepherd, and N. Stone, New relationships between breast microcalcifications and cancer, Br. J. Cancer, vol.103, pp.1034-1039, 2010.

J. T. Kwak, A. Kajdacsy-balla, V. Macias, M. Walsh, S. Sinha et al., Improving Prediction of Prostate Cancer Recurrence using Chemical Imaging, Sci. Rep, vol.5, 2015.

D. C. Fernandez, R. Bhargava, S. M. Hewitt, and I. W. Levin, Infrared spectroscopic imaging for histopathologic recognition, Nat. Biotechnol, vol.23, pp.469-474, 2005.

J. Nallala, M. D. Diebold, C. Gobinet, O. Bouche, G. D. Sockalingum et al., Infrared spectral histopathology for cancer diagnosis: A novel approach for automated pattern recognition of colon adenocarcinoma, Analyst, vol.139, pp.4005-4015, 2014.

C. R. Peterson, N. Prtljaga, M. Farries, J. Ward, B. Napier et al., Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source, Opt. Lett, vol.43, pp.999-1002, 2018.

S. Dupont, C. Peterson, J. Thogerson, C. Agger, and O. Bang, IR microscopy utilizing intense supercontinuum light source, Opt. Express, vol.20, pp.4887-4892, 2012.

M. Farries, J. Ward, I. Lindsay, J. Nallala, and P. Moselund, Fast hyper-spectral imaging of cytological samples in the mid-infrared wavelength region, Proceedings of the Conference on Optical Biopsy XV-Toward Real-Time Spectroscopic Imaging and Diagnosis, vol.10060, p.100600, 2017.

F. Borondics, M. Jossent, C. Sandt, L. Lavoute, D. Gaponov et al., Supercontinuum-based Fourier transform infrared spectromicroscopy, Optica, vol.5, pp.378-381, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01746040