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 2 

Abstract 1 

 2 
Chimeric antigen receptor (CAR) T-cells targeting CD19 demonstrated remarkable efficacy 3 

for the treatment of B-cell malignancies. The development of CAR T-cells against T-cell 4 

malignancies appears more challenging due to the similarities between the therapeutic, 5 

normal and malignant T-cells. The obstacles include CAR T-cell fratricide, T-cell aplasia, and 6 

contamination of CAR T-cell products with malignant T-cells.  Here, we review these 7 

challenges and the solutions proposed to overcome these limitations. 8 

 9 
 10 

Introduction 11 

 12 

Chimeric antigen receptor (CAR) T-cells demonstrated remarkable efficacy for the treatment 13 

of B-cell malignancies and have been approved by the US Food and Drug Administration 14 

(FDA) for the treatment of relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL) 15 

and diffuse large B-cell lymphoma (DLBCL).(1–5) This proof of concept generated great 16 

enthusiasm for the development of CAR T-cells directed against other types of cancer, 17 

including T-cell malignancies.(6,7)   18 

 19 

T-cell malignancies encompass immature (i.e. T-cell acute lymphoblastic leukemias (T-ALL)) 20 

and mature (i.e. T-cell lymphomas (TCL)) lymphoid neoplasms and are often associated with 21 

a dismal prognosis.(8–10) 22 

 23 

Despite great interest, the development of CAR T-cells against T-cell malignancies has been 24 

limited so far due to the difficulties to distinguish between therapeutic, normal and 25 

malignant T-cells. Here, we review the challenges raised by such development and describe 26 

the solutions that have been proposed to address these limitations. 27 



 3 

Challenges 1 

 2 
CAR T-cells, directed against antigens shared with normal T-cells, may recognize and kill 3 3 

types of cells: tumor T-cells, normal T-cells and CAR T-cells (Figure 1). Mutual killing of CAR T-4 

cells, also called fratricide, may prevent the generation, expansion and persistence of CAR T-5 

cells. Prolonged and profound T-cell aplasia induced by the destruction of normal T-cells 6 

exposes patients to severe opportunistic infections.(11,12) Thus, developing CAR T-cells for 7 

T-cell malignancies requires targeting malignant T-cells while sparing normal and CAR T-cells, 8 

or at least some subsets of them.  9 

 10 

Furthermore, CAR T-cell products may be contaminated with malignant T-cells. Indeed, 11 

circulating tumor T-cells are often found in the peripheral blood of patients with T-ALL(9,13–12 

15) and, although less frequently, with TCL.(8,16) Because tumor T-cells may harbor the 13 

same phenotypic and functional properties as normal T-cells(17), they may be harvested, 14 

transduced, expanded and infused concomitantly with normal T-cells. This process may lead 15 

to the generation of “CAR tumor T-cells”. Ruella et al. recently described accidental 16 

transduction of CAR construct in leukemic B-ALL cells leading to CAR expressing blasts (so 17 

called “CARB”).(18) In these patients, CD19 CAR at the blast surface bound to CD19, thus 18 

preventing their recognition by CAR T-cells. A similar mechanism may be anticipated with 19 

malignant T-cells if transduced with the CAR construct. Furthermore, contaminating tumor 20 

T-cells may also be genetically edited to prevent the expression of a T-cell target along with 21 

normal T-cells and thereby escape CAR T-cells recognition and eradication. Thus, developing 22 

CAR T-cells for T-cell malignancies requires avoiding contamination of the CAR T-cell product 23 

with malignant transduced T-cells. 24 

 25 



 4 

Proposed solutions 1 

 2 
Fratricide 3 
 4 
To prevent fratricide, CAR cells should be directed against a tumor antigen that is not shared 5 

(or not completely) between malignant and therapeutic T-cells. This can be achieved in 2 6 

ways: i) either by targeting a tumor antigen that is not naturally expressed by the CAR T-7 

cells, ii) or by using CAR cells that do not express the T-cell target which can be achieved by 8 

using CAR T-cells that have been genetically edited ex vivo to prevent expression of the T-cell 9 

target or by using non-T CAR cells such as NK-cells.  10 

 11 

CAR T-cells directed against antigens that spare CAR T-cells (Table 1) 12 

 13 

Most target antigens are shared between normal and malignant T-cells(8,19,20) rendering 14 

specific targeting of tumor T-cells challenging. Strategies that target tumor antigens while 15 

sparing CAR T-cells include targeting of pan-T antigens which are down-regulated during CAR 16 

T-cell expansion (e.g. CD5) thereby preventing or minimizing CAR T-cell fratricide(21), or 17 

targeting of antigens which are expressed only by a subset of normal T-cells (e.g. CD4 or 18 

CD30) thereby sparing subsets of CAR T-cells (Table 1).(22–24) 19 

 20 

CD5 CAR T-cells 21 

CD5 is expressed by normal T-cells and by most T-ALL and TCL.(8,25) In preclinical models, 22 

CD5 is downregulated through internalization following CAR T-cell expansion and activation, 23 

thus preventing fratricide.(21,26) However, this is not observed when using CAR T-cells 24 

containing a TNFR superfamily co-stimulatory domain such as 4-1BB.(27,28)  25 

 26 



 5 

CD4 CAR T-cells 1 

CD4 is expressed by two thirds of normal T-cells, by most TCL and a subset of T-ALL.(8,17,25) 2 

Preclinical data testing CD4 CAR T-cells have shown a highly enriched CD8+ CAR T-cells 3 

product which efficiently killed lymphoma cells in vitro and in vivo.(22) However, such CD4 4 

CAR T-cells will induce a CD4 T-cell aplasia, and this would result in a syndrome similar to 5 

HIV/AIDS. Thus, we view this approach as a temporary or bridging strategy. 6 

 7 

CD30 CAR T-cells 8 

CD30 is expressed by a subset of activated B and T-cells, virtually all Hodgkin lymphomas 9 

(HL) and anaplastic large cell lymphomas (ALCL), subsets of peripheral TCL, and about one 10 

third of T-ALL.(29,30) Following demonstration of a preclinical activity(31), CD30 CAR T-cells 11 

have been evaluated in two phase I clinical trials, mostly in patients with HL.(23,24) No 12 

decrease in B or T-cell counts were described in these studies. Furthermore, T-cell immunity 13 

to common viral pathogens did not seem to be impaired.(23) This is in line with what has 14 

been observed in patients treated with brentuximab-vedotin, an antibody-drug conjugate 15 

directed against CD30 where no unexpected opportunistic infections have been 16 

observed.(32) In the study by Ramos et al., two patients with ALCL (one systemic ALK+ and 17 

one cutaneous ALK-) were infused with CD30 CAR T-cells.(23,31) One of the two patients 18 

achieved a complete remission which lasted for 9 months following 4 infusions of CD30 CAR 19 

T-cells at the highest dose (2.108 cells/m2).(23) Wang and colleagues observed a partial 20 

response following infusion without conditioning regimen in one (and only) ALCL 21 

(cutaneous) patient.(24) These encouraging results may be further improved by adding a 22 

lymphodepleting conditioning regimen prior to the CD30 CAR T-cell infusion.(33,34) 23 

 24 



 6 

Genetically-edited CAR T-cells to prevent target expression 1 

 2 

Fratricide may also be avoided by knocking-out the target gene using gene editing (such as 3 

TALEN or CRISPR system). This approach has been evaluated preclinically with CD7 CAR T-4 

cells. CD7 is expressed by normal T and NK-cells, by most T-ALL and a subset of TCL.(8,25) 5 

Unlike CD5, CD7 is poorly downregulated upon CAR T-cell expansion/activation. Thus, 6 

prevention of fratricide requires genomic disruption of CD7 prior to CAR transduction. In 7 

preclinical models, CRISPR/Cas9-mediated editing of CD7 abrogates fratricide and enables 8 

the expansion of CAR T-cells.(35,36) Similar results have been achieved using PEBL 9 

technology(37), a method that prevents CD7 surface expression by anchoring newly 10 

synthesized CD7 in the endoplasmic reticulum and/or golgi.(38–40) Gomes-Silva et al. 11 

suggested that the infused CD7 CAR T-cells may retain antiviral activity through their native 12 

receptor and therefore counteract the profound immunodeficiency induced by on-13 

target/off-tumor effects of CD7 CAR T-cells.(35)  14 

 15 

CAR NK-cells 16 

 17 

CARs are commonly transduced into T-cells but the use of NK-cells is emerging.(41) Using 18 

NK-cells is a promising strategy to avoid fratricide. The typical cell surface phenotype of NK-19 

cells shows lack of TCR, CD3 and CD5 expression.(42,43) Conversely, NK-cells are 20 

characterized by CD56 and CD7 expression.(44) NK-cells are part of the innate immune 21 

system and have natural cytotoxic properties against tumors which can be further improved 22 

by CAR engineering.(41,45,46) NK-cells present several advantages for CAR engineering: i) 23 

their phenotype (different from T-cells) can be used to prevent fratricide and avoid 24 
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contamination, ii) due to their lack of a TCR receptor, they do not naturally induce graft-1 

versus-host disease (GVHD)(47) and thus can be used in allogeneic conditions, iii) their short 2 

lifespan may prevent prolonged T-cell aplasia.(41) However, using blood NK-cells to 3 

manufacture CAR cells is challenging because the collection, expansion and transduction of 4 

these cells is difficult.(48) For these reasons, CAR NK-cells directed against CD3, CD4 and CD5 5 

have been engineered using the NK-92 cell line, a human cell line derived from a patient 6 

with a NK-cell lymphoma, rather than natural NK-cells.(43,48–52) No fratricide is expected 7 

since NK-cells do not express these targets. In preclinical models however, CAR T-cells seem 8 

to outperform CAR NK-92 cells. Although CAR NK-92 cells can induce significant reduction of 9 

tumor burden, they lack persistence in xenograft mouse models, consistent with the short 10 

lifespan of NK-cells. Moreover, some concerns may be raised regarding the potential 11 

tumorigenicity of CAR NK-92 cells since they originate from a transformed cell line. To 12 

prevent this risk, NK-92 cells are irradiated before injection to patients. NK-92 cells (not 13 

genetically engineered) have been evaluated in phase I clinical trials in patients with 14 

metastatic solid tumors.(53,54) Another safety concern is the advent of neurotoxicity 15 

(strokes) after infusion of CD3 and CD5 CAR NK-92 cells in mice.(43,49) 16 

 17 
T-cell aplasia 18 
 19 
Unlike B-cell aplasia which is usually well tolerated and can be compensated with continuous 20 

infusion of immunoglobulins for the lack of humoral adaptive immunity(55,56), prolonged T-21 

cell aplasia exposes patients to opportunistic infections.(11,12) Prevention of prolonged T-22 

cell aplasia may be achieved in 3 ways: i) either by targeting a tumor antigen that is not 23 

expressed by all or a subset of normal T-cells, ii) by using short-lived CAR cells and iii) by 24 



 8 

myeloablation and subsequent bridging to allogeneic hematopoietic stem cell 1 

transplantation (HSCT). 2 

 3 

CAR T-cells directed against antigens that spare all or subsets of normal T-cells (Table 1) 4 

 5 

Such strategies have been previously described (paragraph “Fratricide”). However, depletion 6 

of certain T-cell subsets which are quantitatively (CD5+ or CD7+) or qualitatively (CD4+) 7 

important may still induce profound immune suppression. Depletion of other T-cell subsets 8 

such as CD30 may be better tolerated.(23,24) Another promising approach is the targeting of 9 

the T-cell receptor beta constant 1 (TRBC1) or TRBC2. Physiologically, the TCR β chain 10 

expresses either TRBC1 or the TRBC2 constant region.(57) Maciocia et al. have shown that 11 

the proportion of TRBC1+ T-cells varies between 25% to 47% in healthy donors, regardless of 12 

the T-cell subset.(58) T-cell leukemias and lymphomas, instead, are clonally TRBC1 positive 13 

or negative.(58) Therefore, TRBC1 CAR T-cells kill specifically TRBC1 malignancies while 14 

sparing TRBC2+ normal T-cells.(58) A clinical trial testing TRBC1 CAR T-cells in T-cell 15 

lymphomas is about to start (AUTO4).  16 

 17 

Short-lived CAR cells 18 

 19 

Another way to prevent prolonged T-cell aplasia is to use CAR cells with limited lifespan. This 20 

can be achieved by using i) allogeneic CAR T-cells, ii) CAR NK-cells, iii) non-viral mRNA 21 

transfection with electroporation(59), or iv) a safety switch (such as suicide gene or a 22 

targetable surface marker).(60–64) However, these strategies do not allow prolonged 23 
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persistence of CAR T-cells meant to prevent disease recurrence. Thus, they may rather be 1 

used as a bridge to transplant. 2 

 3 
Contamination of CAR T-cells product with malignant T-cells 4 
 5 
Purifying the apheresis product from circulating tumor T-cells to produce CAR T-cells is 6 

challenging since it is often difficult to distinguish between normal and neoplastic T-cells. 7 

Thus, avoiding contamination can be achieved in 2 ways: i) either by purifying and 8 

transfecting non-T cells, such as NK-cells (described previously), or ii) by producing CAR T-9 

cells from an allogeneic healthy donor.  10 

 11 

Allogeneic CAR T-cells 12 

 13 

CAR T-cells can be generated from allogeneic donors.(2) Nevertheless, infusion of allogeneic 14 

CAR T-cells may cause life-threatening GVHD, even after HLA matching.(65,66) To overcome 15 

this issue, Cooper et al. developed “off-the-shelf”, universal CD7 CAR T-cells (UCART7).(36) 16 

Using multiplex CRISPR/Cas9 gene editing of T-cells before CAR transduction, they deleted 17 

both CD7 and T-cell receptor alpha chain (TRAC).  In preclinical models, their CD7 CAR 18 

efficiently killed T-ALL without inducing xenogeneic GVHD in a patient-derived xenograft 19 

(PDX) mouse model.(36) These allogeneic CAR T-cells are expected to have a short lifespan 20 

because they will be eliminated upon immune reconstitution of the host. This short 21 

persistence may be seen as an advantage to prevent T-cell aplasia but as a disadvantage to 22 

prevent cancer recurrence.  23 

 24 
 25 

  26 
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Conclusion 1 

 2 
The development of CAR T-cells for T-cell malignancies faces unique challenges due to the 3 

similarities between therapeutic, normal, and malignant T-cells. Many of the solutions that 4 

have been proposed do not seem optimal, either because they lack specificity (risk of 5 

fratricide, immune suppression and/or contamination) or persistence (risk of tumor 6 

recurrence). Targeting of certain subsets (e.g. CD30 or TRBC1 CAR T-cells) seems promising 7 

but is restricted to subtypes of T-cell malignancies. It is unlikely that one type of CAR T-cells 8 

will be used for all T-cell malignancies (unlike CD19 CAR T-cells for B-cell malignancies). To 9 

date, few studies evaluated CAR T-cells in patients with T-cell malignancies(23,24) but 10 

several trials are underway or about to be launched (Table 1). Results from these clinical 11 

trials are eagerly awaited. 12 

 13 
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Figure 1. Challenges and solutions in targeting T-cell antigens with CAR T-cells 

 
*Contaminating malignant T-cells transduced with CAR may escape recognition by normal CAR T-cells if the chimeric receptor binds to its target at the cell 
surface or if it has been genetically edited to prevent target expression. 
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Table 1. Effects of different CAR cells constructs on the three T-cell compartments (therapeutic, normal and malignant T-cells) 
 
CAR cells Target CAR cells Normal T-cells Malignant T-cells* Preclinical studies Clinical studies 

 
CAR T-cells 

CD4 

Partially depleted 
(CD4 expressed by two-
thirds of T-cells) 

Partially depleted 
(CD4 expressed by 
two-thirds of T-
cells) 

CD4 expressed in the 
majority of TCL and 
in a subset of T-ALL 

Specific killing of ALCL cell line 
and human primary samples in 
vitro; prolonged survival in ALCL 
xenograft (cell line) mouse 
model(22)  

No clinical studies 

CD5 

Transiently depleted 
(CD5 expressed by all 
T-cells but 
downregulated in CAR 
T-cells expressing CD28 
costimulatory domain) 

Depleted 
(CD5 expressed by 
all T-cells) 

CD5 expressed in 
most T-ALL and TCL 

 28.z CD5 CAR : Transient 
depletion (CD5 is lost 
following CAR 
expression)(21)  

 4-1BB.z CD5 + conditional 
CAR expression system (4-1 
BB.z Tet OFF CD5 CAR cells): 
CAR cells preserved(28)  

 Both constructs showed 
cytotoxicity against T-ALL cell 
lines in vitro. In vivo, survival 
of T-ALL xenograft (cell line) 
mice models enhanced with 
BB.z Tet OFF CD5 CAR. 

Ongoing trial : 
NCT03081910  

CD7 

Depleted 
(CD7 expressed by all 
T-cells and poorly 
downregulated in CAR 
T-cells) 

Depleted 
(CD7 expressed by 
all T-cells) 

CD7 expressed by 
most T-ALL and a 
subset of TCL 

 CD7 downregulation before 
CAR expression (CD7 PEBL 
construct, whereby CD7 scFv 
is linked to ER retention 
domains)(37)  

 CRISPR-mediated deletion of 
CD7 prior to CAR 
transduction(35)  

 CRISPR-mediated deletion of 
CD7 and TCR alpha chain 
(UCART7)(36)  

 All three constructs showed 
in vitro lysis of T-ALL cell lines 
and primary T-ALL cells. In 

Ongoing trial : 
NCT02742727  
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vivo, anti-leukemic effects 
were observed in T-ALL 
xenograft (cell lines) and PDX 
models. 

CD30 

Partially depleted 
(CD30 expressed by a 
small subset of 
activated T-cells) 

 

Partially depleted 
(CD30 expressed 
by a small subset 
of activated T-
cells) 
No significant 
changes in T-cell 
counts observed 
in clinical 
trials.(23,24)  

CD30 expressed by 
virtually all HL and 
ALCL, a subset of 
other TCL, and about 
one third of T-
ALL(30)  
 

 

In vitro, cytotoxic activity of CD30 
CAR EBV-CTL against an ALCL cell 
line. In vivo, tumor growth control 
in HL xenograft (cell line) 
model.(31)  
 

 Phase I study which 
included 2 ALCL patients. 
One patient experiences 
a 9 month-long complete 
remission after 4 CAR T-
cells infusion. No 
response observed in the 
second patient.(23)  

 Phase I study which 
included 1 ALCL patient 
who showed a partial 
remission after the first 
CAR T-cells infusion.(24)  

 Ongoing trials : 
NCT03049449 , 
NCT02917083,  
NCT02663297 

TRBC1 

Partially depleted 

 
Partially depleted 
(TRBC1 expressed 
by ≈1/3 of normal 
T-cells)(58)  

Around 40% of T-cell 
malignancies were 
found to be 
TRBC1+(58)  

Persistence of normal T-cells in T-
ALL xenografts injected with 
human peripheral blood 
mononuclear cells.(58) 

Pending trial : AUTO4 

 
CAR NK-cells 

CD3 

Preserved 
(CD3 not expressed by 
NK-cells) 

Transiently 
depleted 
(CD3 expressed by 
all T-cells but CAR 
NK short-lived) 

CD3 expressed by 
the majority of TCL 
and a subset of T-ALL 

In vitro, lysis T-ALL cell line and 
primary TCL. In vivo, anti-
leukemic effects in xenograft 
models (cell lines) but relapses 
observed.(49) 

No clinical studies 

CD4 

Preserved 
(CD4 not expressed by 
NK-cells) 

Partially and 
transiently 
depleted 
(CD4 expressed by 
two-thirds of T-

CD4 expressed in the 
majority of TCL and 
in a subset of T-ALL 

In vitro, lysis of T-ALL and 
lymphoma lines, primary Sezary 
syndrome and primary T-ALL 
cells. In vivo, anti-leukemic effects 
in a xenograft lymphoma model 

No clinical studies 
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cells and CAR NK 
short-lived) 

(ALCL cell line).(50) 

CD5 

Preserved 
(CD5 not expressed by 
NK-cells) 

Transiently 
depleted 
(CD5 expressed by 
all T-cells but CAR 
NK short-lived) 

CD5 expressed in 
most T-ALL and TCL 

In vitro, lysis T-ALL and lymphoma 
cell lines, primary T-ALL, TCL and 
Sezary syndrome cells. In vivo, 
anti-leukemic effects in a 
xenograft T-ALL model (cell line) 
when injected in multiple cell 
doses.(43) 

No clinical studies 

*Based on Ref 8, 19 and 20  
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