D. In and . Cytoplasm,

D. Of-ebp-2, D. , and A. Lis-1, BUT INDEPENDENTLY OF EBP

. Barbosa, Supplemental Figure S5C,D), we set out to confirm that that dynein uses EBP-2 EB to track microtubule plus ends, as previously reported, Because DYCI-1::mCherry displayed similar dynamics to EBP-2::GFP and colocalized with it, 2017.

. Furthermore-;-duellberg, To further test whether dynein hitches a ride with EBP-2, either directly or with the help of accessory proteins, we depleted dynactin and LIS-1 by dnc-1 p150/glued (RNAi) and lis-1(RNAi), respectively. These RNAi were partial, to preserve the early steps of mitosis. We observed a strong reduction in the LSP-directed track densities, suggest that in higher eukaryotes dynein tracks the microtubule plus ends via a hierarchical interaction involving binding to dynactin, which in turn binds to EB1 with the help of CLIP170, 1998.

. Duellberg, We concluded that dynein accumulates at the microtubule plus ends via EBP-2 EB with the help of dynactin and LIS-1, which resembles the findings in mammal protein experiments, 2014.

. Jaqaman, We tracked spots on both channels, setting as colocalized those spots that are closer than 4 pixels at each time. We studied only those tracks longer than 6 time-points and which displayed directed motion, although we reduced the threshold track length to 3 points for cortical colocalizations. In all cases, we wondered whether the high density of DYCI-1::mCherry spots might cause artefactual colocalization. Therefore, for each colocalization experiment, we compared the results with the colocalization of a synthetic set of spots of identical count, We crossed the strain carrying randomly integrated DYCI-1::mCherry with ones carrying either TBA-2::YFP or EBP-2::GFP. We found that most of the DYCI-1::mCherry spots colocalized with microtubule plus ends and EBP-2::GFP in the doubly labeled strains (Supplemental Figure S5A-D and Movie S10-11), 2011.

A. Akhmanova and M. O. Steinmetz, Control of microtubule organization and dynamics: two ends in the limelight, Nat Rev Mol Cell Biol, vol.16, pp.711-726, 2015.

D. J. Barbosa, J. Duro, B. Prevo, D. K. Cheerambathur, A. X. Carvalho et al., , 2017.

, Dynactin binding to tyrosinated microtubules promotes centrosome centration in C. elegans by enhancing dynein-mediated organelle transport, PLoS Genet, vol.13, 1006941.

P. Bieling, L. Laan, H. Schek, E. L. Munteanu, L. Sandblad et al., Reconstitution of a microtubule plus-end tracking system in vitro, Nature, vol.450, pp.1100-1105, 2007.

T. Boulin and J. L. Bessereau, Mos1-mediated insertional mutagenesis in Caenorhabditis elegans, Nat Protoc, vol.2, pp.1276-1287, 2007.

M. M. Cockell, K. Baumer, G. , and P. , lis-1 is required for dynein-dependent cell division processes in C. elegans embryos, J Cell Sci, vol.117, pp.4571-4582, 2004.

S. Costantino, J. W. Comeau, D. L. Kolin, and P. W. Wiseman, Accuracy and dynamic range of spatial image correlation and cross-correlation spectroscopy, Biophys J, vol.89, pp.1251-1260, 2005.

P. Coupe, M. Munz, J. V. Manjon, E. S. Ruthazer, C. et al., A CANDLE for a deeper in vivo insight, Medical Image Analysis, vol.16, pp.849-864, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00676241

I. Dernyi, F. Jlicher, P. , and J. , Formation and Interaction of Membrane Tubes, Physical Review Letters, vol.88, p.238101, 2002.

K. Dragestein, Dynamic behavior of GFP-CLIP-170 reveals fast protein turnover on microtubule plus ends, pp.729-737, 2008.

S. W. Grill, J. Howard, E. Schaffer, E. H. Stelzer, and A. A. Hyman, The distribution of active force generators controls mitotic spindle position, Science, vol.301, pp.518-521, 2003.

J. Howard, Mechanics of motor proteins and the cytoskeleton, 2001.

S. Huet, E. Karatekin, V. S. Tran, I. Fanget, S. Cribier et al., Analysis of transient behavior in complex trajectories: application to secretory vesicle dynamics, Biophysical Journal, vol.91, pp.3542-3559, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00169591

K. Jaqaman, H. Kuwata, N. Touret, R. Collins, W. S. Trimble et al., Cytoskeletal control of CD36 diffusion promotes its receptor and signaling function, Cell, vol.146, pp.593-606, 2011.

K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein et al., Robust single-particle tracking in live-cell time-lapse sequences, Nat Methods, vol.5, pp.695-702, 2008.

R. S. Kamath, A. G. Fraser, Y. Dong, G. Poulin, R. Durbin et al., Systematic functional analysis of the Caenorhabditis elegans genome using RNAi, Nature, vol.421, pp.231-237, 2003.

C. Leduc, O. Campas, K. B. Zeldovich, A. Roux, P. Jolimaitre et al., Cooperative extraction of membrane nanotubes by molecular motors, Proc Natl Acad Sci U S A, vol.101, pp.17096-17101, 2004.

G. Maton, F. Edwards, B. Lacroix, M. Stefanutti, K. Laband et al., Kinetochore components are required for central spindle assembly, Nat Cell Biol, vol.17, pp.697-705, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01221304

B. Mercat, X. Pinson, J. Fouchard, H. Mary, S. Pastezeur et al., Spindle Micro-Fluctuations of Length Reveal its Dynamics Over Cell Division, p.622, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01275520

H. Mi, Q. Dong, A. Muruganujan, P. Gaudet, S. Lewis et al., PANTHER version 7: improved phylogenetic trees, orthologs and collaboration with the Gene Ontology Consortium, Nucleic acids research, vol.38, pp.204-210, 2010.

H. Mi, A. Muruganujan, J. T. Casagrande, T. , and P. D. , Large-scale gene function analysis with the PANTHER classification system, Nat. Protocols, vol.8, pp.1551-1566, 2013.

J. Pecreaux, J. C. Roper, K. Kruse, F. Julicher, A. A. Hyman et al., Spindle oscillations during asymmetric cell division require a threshold number of active cortical force generators, Curr Biol, vol.16, pp.2111-2122, 2006.

S. Redemann, J. Pecreaux, N. W. Goehring, K. Khairy, E. H. Stelzer et al., Membrane invaginations reveal cortical sites that pull on mitotic spindles in one-cell C. elegans embryos, PLoS One, vol.5, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01497094

V. Robert and J. L. Bessereau, Targeted engineering of the Caenorhabditis elegans genome following Mos1-triggered chromosomal breaks, Embo J, vol.26, pp.170-183, 2007.

D. Sage, F. R. Neumann, F. Hediger, S. M. Gasser, and M. Unser, Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics, IEEE Transactions on Image Processing, vol.14, pp.1372-1383, 2005.

M. Sarov, J. I. Murray, K. Schanze, A. Pozniakovski, W. Niu et al., A genome-scale resource for in vivo tag-based protein function exploration in, C. elegans. Cell, vol.150, pp.855-866, 2012.

M. Sarov, S. Schneider, A. Pozniakovski, A. Roguev, S. Ernst et al., A recombineering pipeline for functional genomics applied to Caenorhabditis elegans, Nat Methods, vol.3, pp.839-844, 2006.

R. Schmidt, L. E. Fielmich, I. Grigoriev, E. A. Katrukha, A. Akhmanova et al., Two populations of cytoplasmic dynein contribute to spindle positioning in C. elegans embryos, J Cell Biol, vol.216, pp.2777-2793, 2017.

M. Shivaraju, J. R. Unruh, B. D. Slaughter, M. Mattingly, J. Berman et al., Cellcycle-coupled structural oscillation of centromeric nucleosomes in yeast, Cell, vol.150, pp.304-316, 2012.

A. R. Skop and J. G. White, The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos, Curr Biol, vol.8, pp.1110-1116, 1998.

B. Sonnichsen, L. B. Koski, A. Walsh, P. Marschall, B. Neumann et al., Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans, Nature, vol.434, pp.462-469, 2005.

M. Srayko, A. Kaya, J. Stamford, H. , and A. A. , Identification and characterization of factors required for microtubule growth and nucleation in the early C. elegans embryo, Dev Cell, vol.9, pp.223-236, 2005.

J. Widengren, R. Rigler, and U. Mets, Triplet-state monitoring by fluorescence correlation spectroscopy, Journal of fluorescence, vol.4, pp.255-258, 1994.