S. E. Adams, Molecular Similarity and Xenobiotic Metabolism, 2010.

A. Alonen, O. Aitio, K. Hakala, L. Luukkanen, M. Finel et al., Biosynthesis of dobutamine monoglucuronides and glucuronidation of dobutamine by recombinant human Udp-glucuronosyltransferases, Drug Metab. Dispos, vol.33, issue.5, pp.657-663, 2005.

T. M. Baughman, C. L. Talarico, and J. R. Soglia, Evaluation of the metabolism of propranolol by linear ion trap technology in mouse, rat, dog, monkey, and human cryopreserved hepatocytes, Rapid Commun. Mass Spectrom, vol.23, issue.14, pp.2146-2150, 2009.

,

F. A. Beland, Chemical Carcinogenesis and Mutagenesis I, 1990.

M. Bellamri, L. Le-hegarat, R. J. Turesky, and S. Langouët, Metabolism of the tobacco carcinogen 2-amino-9h-pyrido[2,3-b]indole (A?C) in primary human hepatocytes, Chem. Res. Toxicol, vol.30, issue.2, pp.657-668, 2017.

A. Bugrim, T. Nikolskaya, and Y. Nikolsky, Early prediction of drug metabolism and toxicity: systems biology approach and modeling, Drug Discov. Today, vol.9, issue.3, pp.127-135, 2004.

M. A. Butler, F. P. Guengerich, and F. F. Kadlubar, Metabolic oxidation of the carcinogens 4-aminobiphenyl and 4,4'-methylenebis(2-chloroaniline) by human hepatic microsomes and by purified rat hepatic cytochrome P-450 monooxygenases, Cancer Res, vol.49, issue.1, pp.25-31, 1989.

W. G. Button, P. N. Judson, A. Long, and J. D. Vessey, Using absolute and relative reasoning in the prediction of the potential metabolism of xenobiotics, J. Chem. Inf. Comput. Sci, vol.43, issue.5, pp.1371-1377, 2003.

T. Cai, L. Yao, and R. J. Turesky, Bioactivation of heterocyclic aromatic amines by UDP glucuronosyltransferases, Chem. Res. Toxicol, vol.29, issue.5, pp.879-891, 2016.

V. Campagna-slater, J. Pottel, E. Therrien, L. Cantin, and N. Moitessier, Development of a computational tool to rival experts in the prediction of sites of metabolism of xenobiotics by p450s, J. Chem. Inf. Model, vol.52, issue.9, pp.2471-2483, 2012.

J. Castañeda-acosta, P. L. Bounds, and G. W. Winston, Microsomal deacetylation of ring-hydroxylated 2-(acetylamino)fluorene isomers: effect of ring position and molecular mechanics considerations, J. Biochem. Mol. Toxicol, vol.13, issue.5, pp.279-286, 1999.

. Committee-on-amines and D. B. Clayson, Aromatic Amines: An Assessment of the Biological and Environmental Effects. National Academies google-Books-ID: slArAAAAYAAJ, 1981.

G. Cruciani, E. Carosati, B. De-boeck, K. Ethirajulu, C. Mackie et al., MetaSite: understanding metabolism in human cytochromes from the perspective of the chemist, J. Med. Chem, vol.48, issue.22, pp.6970-6979, 2005.

N. L. Dang, T. B. Hughes, V. Krishnamurthy, and S. J. Swamidass, A simple model predicts UGT-mediated metabolism, Bioinformatics, vol.32, issue.20, pp.3183-3189, 2016.

F. Darvas, Metabolexpert: an expert system for predicting metabolism of substances, QSAR in Environmental Toxicology -II, pp.71-81, 1987.

J. C. Domínguez-romero, J. F. García-reyes, R. Martínez-romero, P. Berton, E. Martínez-lara et al., Combined data mining strategy for the systematic identification of sport drug metabolites in urine by liquid chromatography time-of-flight mass spectrometry, Anal. Chim. Acta, vol.761, pp.1-10, 2013.

B. Eiermann, P. O. Edlund, A. Tjernberg, P. Dalén, M. Dahl et al., 1-and 3-hydroxylations, in addition to 4-hydroxylation, of debrisoquine are catalyzed by cytochrome P450 2d6 in humans, Drug Metab. Dispos, vol.26, issue.11, pp.1096-1101, 1998.

N. Franklin, The N-glucuronidation of xenobiotics. An aspet-supported symposium held at the 1996 faseb meeting in, Drug Metab. Dispos.: Biol. Fate Chem, vol.26, issue.9, p.829, 1998.

C. B. Frederick, C. C. Weis, T. J. Flammang, C. N. Martin, and F. F. Kadlubar, Hepatic Noxidation, acetyl-transfer and DNA-binding of the acetylated metabolites of the carcinogen, benzidine, Carcinogenesis, vol.6, issue.7, pp.959-965, 1985.

R. A. Friesner, J. L. Banks, R. B. Murphy, T. A. Halgren, J. J. Klicic et al., Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem, vol.47, issue.7, pp.1739-1749, 2004.

M. Gibis, Heterocyclic aromatic amines in cooked meat products: causes, formation, occurrence, and risk assessment, Compr. Rev. Food Sci. Food Saf, vol.15, issue.2, pp.269-302, 2016.

T. A. Halgren, R. B. Murphy, R. A. Friesner, H. S. Beard, L. L. Frye et al., Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening, J. Med. Chem, vol.47, issue.7, pp.1750-1759, 2004.

G. J. Hammons, F. P. Guengerich, C. C. Weis, F. A. Beland, and F. F. Kadlubar, Metabolic oxidation of carcinogenic arylamines by rat, dog, and human hepatic microsomes and by purified flavin-containing and cytochrome P-450 monooxygenases, Cancer Res, vol.45, issue.8, pp.3578-3585, 1985.

T. Hiroi, T. Chow, S. Imaoka, and Y. Funae, Catalytic specificity of CYP2d isoforms in rat and human, Drug Metab. Dispos, vol.30, issue.9, pp.970-976, 2002.

T. B. Hughes, G. P. Miller, and S. J. Swamidass, Site of reactivity models predict molecular reactivity of diverse chemicals with glutathione, Chem. Res. Toxicol, vol.28, issue.4, pp.797-809, 2015.

T. B. Hughes, N. L. Dang, G. P. Miller, and S. J. Swamidass, Modeling reactivity to biological macromolecules with a deep multitask network, ACS Cent. Sci, vol.2, issue.8, pp.529-537, 2016.

L. Jiang, S. Liang, C. Wang, G. Ge, X. Huo et al., Identifying and applying a highly selective probe to simultaneously determine the O-glucuronidation activity of human UGT1a3 and UGT1a4, Sci. Rep, 2015.

F. F. Kadlubar, J. A. Miller, and E. C. Miller, Hepatic microsomal N-glucuronidation and nucleic acid binding of N-hydroxy arylamines in relation to urinary bladder carcinogenesis, Cancer Res, vol.37, issue.3, pp.805-814, 1977.

S. Kaivosaari, M. Finel, and M. Koskinen, N-glucuronidation of drugs and other xenobiotics by human and animal UDP-glucuronosyltransferases, Xenobiotica, vol.41, issue.8, pp.652-669, 2011.

J. Kirchmair, M. J. Williamson, J. D. Tyzack, L. Tan, P. J. Bond et al., Computational prediction of metabolism: sites, products, SAR, P450 enzyme dynamics, and mechanisms, J. Chem. Inf. Model, vol.52, issue.3, pp.617-648, 2012.

G. Klopman, M. Dimayuga, and J. Talafous, META. 1. A program for the evaluation of metabolic transformation of chemicals, J. Chem. Inf. Comput. Sci, vol.34, issue.6, pp.1320-1325, 1994.

G. Klopman, M. Tu, and J. Talafous, META. 3. A genetic algorithm for metabolic transform priorities optimization, J. Chem. Inf. Comput. Sci, vol.37, issue.2, pp.329-334, 1997.

S. Langouët, D. H. Welti, N. Kerriguy, L. B. Fay, T. Huynh-ba et al., Metabolism of 2-amino-3,8-dimethylimidazo [4,5-f]quinoxaline in human hepatocytes: 2-amino-3-methylimidazo[4,5-f]quinoxaline-8-carboxylic acid is a major detoxification pathway catalyzed by cytochrome P450 1a2, Chem. Res. Toxicol, vol.14, issue.2, pp.211-221, 2001.

S. Langouët, A. Paehler, D. H. Welti, N. Kerriguy, A. Guillouzo et al., Differential metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine in rat and human hepatocytes, Carcinogenesis, vol.23, issue.1, pp.115-122, 2002.

D. J. Liska, The detoxification enzyme systems, Altern. Med. Rev.: J. Clin. Ther, vol.3, issue.3, pp.187-198, 1998.

C. A. Marchant, K. A. Briggs, and A. Long, In silico tools for sharing data and knowledge on toxicity and metabolism: derek for windows, meteor, and vatic, Toxicol. Mech. Methods, vol.18, issue.2-3, pp.177-187, 2008.

K. C. Morton, F. A. Beland, F. E. Evans, N. F. Fullerton, and F. F. Kadlubar, Metabolic activation of N-hydroxy-N,N'-diacetylbenzidine by hepatic sulfotransferase, Cancer Res, vol.40, issue.3, pp.751-757, 1980.

, Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42, IARC Monogr. Eval. Carcinog. Risks Hum. Suppl, vol.7, pp.1-440, 1987.

, 2-Nitrofluorene, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol.46, pp.277-289, 1989.

W. Ni, L. Mcnaughton, D. M. Lemaster, R. Sinha, and R. J. Turesky, Quantitation of 13 heterocyclic aromatic amines in cooked beef, pork, and chicken by liquid chromatography-electrospray ionization/tandem mass spectrometry, J. Agric. Food Chem, vol.56, issue.1, pp.68-78, 2008.

A. Orzechowski, D. Schrenk, and K. W. Bock, Metabolism of 1-and 2-naphthylamine in isolated rat hepatocytes, Carcinogenesis, vol.13, issue.12, pp.2227-2232, 1992.

F. Oz and M. Kaya, Heterocyclic aromatic amines in meat, J. Food Process. Preserv, vol.35, issue.6, pp.739-753, 2011.

P. Pais and M. G. Knize, Chromatographic and related techniques for the determination of aromatic heterocyclic amines in foods, J. Chromatogr. B Biomed. Sci. Appl, vol.747, issue.1-2, pp.139-169, 2000.

A. Parkinson and B. W. Ogilvie, Biotransformation of Xenobiotics -Casarett & Doull's Essentials of Toxicology, 2e -AccessPharmacy. McGraw-Hill Medical, McGraw-Hill Global Education Holdings, 2010.

P. Piechota, M. T. Cronin, M. Hewitt, and J. C. Madden, Pragmatic approaches to using computational methods to predict xenobiotic metabolism, J. Chem. Inf. Model, vol.53, issue.6, pp.1282-1293, 2013.

M. Rostkowski, O. Spjuth, and P. Rydberg, WhichCyp: prediction of cytochromes P450 inhibition, Bioinformatics, vol.29, issue.16, pp.2051-2052, 2013.

A. Rudik, A. Dmitriev, A. Lagunin, D. Filimonov, and V. Poroikov, SOMP: web server for in silico prediction of sites of metabolism for drug-like compounds, Bioinformatics, issue.12, pp.2046-2048, 2015.

P. Rydberg, D. E. Gloriam, J. Zaretzki, C. Breneman, and L. Olsen, SMARTCyp: a 2d method for prediction of cytochrome P450-mediated drug metabolism, ACS Med. Chem. Lett, vol.1, issue.3, pp.96-100, 2010.

H. A. Schut and E. G. Snyderwine, DNA adducts of heterocyclic amine food mutagens: implications for mutagenesis and carcinogenesis, Carcinogenesis, vol.20, issue.3, pp.353-368, 1999.

H. A. Schut, F. B. Daniel, K. M. Schenck, T. R. Loeb, and G. D. Stoner, Metabolism and DNA adduct formation of 2-acetylaminofluorene by bladder explants from human, dog, monkey, hamster and rat, Carcinogenesis, vol.5, issue.10, pp.1287-1292, 1984.

J. Talafous, L. M. Sayre, J. J. Mieyal, and G. Klopman, META. 2. A dictionary model of mammalian xenobiotic metabolism, J. Chem. Inf. Comput. Sci, vol.34, issue.6, pp.1326-1333, 1994.

A. Tarcsay, R. Kiss, and G. M. Keseru, Site of metabolism prediction on cytochrome P450 2c9: a knowledge-based docking approach, J. Comput.-Aided Mol. Des, vol.24, issue.5, pp.399-408, 2010.

J. A. Timbrell and T. C. Marrs, Biotransformation of Xenobiotics. General, Applied and Systems Toxicology, 2009.

T. Totsuka, R. Nishigaki, T. Sugimura, and K. Wakabayashi, The possible involvement of mutagenic and carcinogenic heteroyclic amines in human cancer, Acrylamide and Other Hazardous Compounds in Heat-Treated Foods, pp.296-515, 2006.

R. J. Turesky, L. Marchand, and L. , Metabolism and biomarkers of heterocyclic aromatic amines in molecular epidemiology studies: lessons learned from aromatic amines, Chem. Res. Toxicol, vol.24, issue.8, pp.1169-1214, 2011.

R. J. Turesky, N. P. Lang, M. A. Butler, C. H. Teitel, and F. F. Kadlubar, Metabolic activation of carcinogenic heterocyclic aromatic amines by human liver and colon, Carcinogenesis, vol.12, issue.10, pp.1839-1845, 1991.

R. J. Turesky, Metabolism and biodisposition of heterocyclic amines, Prog. Clin. Biol. Res, vol.347, pp.39-53, 1990.

R. J. Turesky, Formation and biochemistry of carcinogenic heterocyclic aromatic amines in cooked meats, Toxicol. Lett, vol.168, issue.3, pp.219-227, 2007.

E. K. Weisburger and J. H. Weisburger, Chemistry, carcinogenicity, and metabolism of 2-fluorenamine and related compounds, Adv. Cancer Res, vol.5, pp.331-431, 1958.

J. Zaretzki, M. Matlock, and S. J. Swamidass, XenoSite: accurately predicting CYPmediated sites of metabolism with neural networks, J. Chem. Inf. Model, vol.53, issue.12, pp.3373-3383, 2013.

V. Delannée, Toxicology Letters, vol.300, pp.18-30, 2019.