J. R. Sootsman, D. Y. Chung, and M. Kanatzidis, New and Old Concepts in Thermoelectric Materials, Angew. Chem. Int. Ed, vol.48, issue.46, pp.8616-8639, 2009.

M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee et al., Enhancement of the Thermoelectric Properties in Nanoscale and Nanostructured Materials, J. Mater. Chem, vol.19, issue.8, pp.9577-9584, 2007.

A. D. Lalonde, Y. Pei, H. Wang, and G. Snyder, , vol.14, pp.526-532, 2011.

G. J. Snyder, E. S. Toberer, J. Li, W. Liu, L. Zhao et al., High-Performance Nanostructured Thermoelectric Materials, Complex Thermoelectric Materials. Nat. Mater, vol.7, issue.2, pp.152-158, 2008.

L. D. Hicks and M. S. Dresselhaus, Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit, Phys. Rev. B, issue.19, pp.12727-12731, 1993.

J. R. Sootsman, H. Kong, C. Uher, J. J. Angelo, C. Wu et al., Large Enhancements in the Thermoelectric Power Factor of Bulk PbTe at High Temperature by Synergistic Nanostructuring, Angew. Chem. Int. Ed, vol.47, issue.45, pp.8618-8622, 2008.

K. Biswas, J. He, I. D. Blum, C. Wu, T. P. Hogan et al., High-Performance Bulk Thermoelectrics with All-Scale Hierarchical Architectures, Nature, vol.2012, issue.7416, pp.414-418

P. F. Poudeu, J. Angelo, A. D. Downey, J. L. Short, T. P. Hogan et al., High Thermoelectric Figure of Merit and Nanostructuring in Bulk P-Type Na1?xPbmSbyTem+2, Angew. Chem. Int. Ed, vol.45, issue.23, pp.3835-3839, 2006.

K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher et al., Strained Endotaxial Nanostructures with High Thermoelectric Figure of Merit, Nat. Chem, vol.2011, issue.2, pp.160-166

Q. Zhang, E. K. Chere, Y. Wang, H. S. Kim, R. He et al., High Thermoelectric Performance of n-Type PbTe1?ySy Due to Deep Lying States Induced by Indium Doping and Spinodal Decomposition, Nano Energy, vol.22, pp.572-582, 2016.

S. Lo, J. He, K. Biswas, M. G. Kanatzidis, and V. P. Dravid, Phonon Scattering and Thermal Conductivity in P-Type Nanostructured PbTe-BaTe Bulk Thermoelectric Materials, Adv. Funct. Mater, vol.2012, issue.24, pp.5175-5184

P. F. Poudeu, A. Guéguen, C. Wu, T. Hogan, and M. G. Kanatzidis, High Figure of Merit in Nanostructured n-Type KPbmSbTem+2 Thermoelectric Materials, Chem. Mater, vol.22, issue.3, pp.1046-1053, 2010.

J. M. Zide, D. Vashaee, Z. X. Bian, G. Zeng, J. E. Bowers et al., Demonstration of Electron Filtering to Increase the Seebeck Coefficient in InGaAs/InGaAlAs Superlattices, Phys. Rev. B, issue.20, p.205335, 2006.

A. Banik, U. S. Shenoy, S. Anand, U. V. Waghmare, and K. Biswas, Mg Alloying in SnTe Facilitates Valence Band Convergence and Optimizes Thermoelectric Properties, Chem. Mater, vol.27, issue.2, pp.581-587, 2015.

Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen et al., Convergence of Electronic Bands for High Performance Bulk Thermoelectrics, Nature, vol.473, issue.7345, pp.66-69, 2011.

A. Banik, U. S. Shenoy, S. Saha, U. V. Waghmare, and K. Biswas, High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe2: Synergistic Effect of Resonance Level and Valence Band Convergence, J. Am. Chem. Soc, vol.138, issue.39, pp.13068-13075, 2016.

B. Srinivasan, R. Gautier, F. Gucci, B. Fontaine, J. Halet et al., Impact of Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions, J. Phys. Chem. C, issue.1, pp.227-235, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01709523

Q. Zhang, B. Liao, Y. Lan, K. Lukas, W. Liu et al., High Thermoelectric Performance by Resonant Dopant Indium in Nanostructured SnTe, Proc. Natl. Acad. Sci. U. S. A, vol.110, issue.33, pp.13261-13266, 2013.

P. Carruthers, Theory of Thermal Conductivity of Solids at Low Temperatures, Rev. Mod. Phys, vol.33, issue.1, pp.92-138, 1961.

B. Srinivasan, F. Gucci, C. Boussard-pledel, F. Cheviré, M. J. Reece et al., Enhancement in Thermoelectric Performance of n-Type Pb-Deficit Pb-Sb-Te Alloys, J. Alloys Compd, vol.729, pp.198-202, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01613123

E. K. Chere, Q. Zhang, K. Mcenaney, M. Yao, F. Cao et al., Enhancement of Thermoelectric Performance in n-Type PbTe1?ySey by Doping Cr and Tuning Te:Se Ratio, Nano Energy, vol.13, pp.355-367, 2015.

W. Zhao, P. Wei, Q. Zhang, C. Dong, L. Liu et al., Enhanced Thermoelectric Performance in Barium and Indium Double-Filled Skutterudite Bulk Materials via Orbital Hybridization Induced by Indium Filler, J. Am. Chem. Soc, vol.131, issue.10, pp.3713-3720, 2009.

S. R. Brown, S. M. Kauzlarich, F. Gascoin, G. J. Snyder, E. S. Toberer et al., Zintl Chemistry for Designing High Efficiency Thermoelectric Materials, Chem. Mater, vol.18, issue.7, pp.624-634, 2006.

S. M. Kauzlarich, S. R. Brown, and G. J. Snyder, Zintl Phases for Thermoelectric Devices, Dalton Trans, issue.21, pp.2099-2107, 2007.

R. Venkatasubramanian, E. Siivola, T. ;. Colpitts, and B. O'quinn, Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit, Nature, issue.6856, pp.597-602, 2001.

A. P. Gonçalves, E. B. Lopes, O. Rouleau, and C. Godart, Conducting Glasses as New Potential Thermoelectric Materials: The Cu-Ge-Te Case, J. Mater. Chem, issue.8, pp.1516-1521, 2010.

P. Lucas, C. Conseil, Z. Yang, Q. Hao, S. Cui et al., Thermoelectric Bulk Glasses Based on the Cu-As-Te-Se System, J. Mater. Chem. A, vol.2013, issue.31, pp.8917-8925
URL : https://hal.archives-ouvertes.fr/hal-00860123

B. Srinivasan, S. Cui, C. Prestipino, A. Gellé, C. Boussard-pledel et al., Possible Mechanism for Hole Conductivity in Cu-As-Te Thermoelectric Glasses: A XANES and EXAFS Study, J. Phys. Chem. C, vol.2017, issue.26, pp.14045-14050
URL : https://hal.archives-ouvertes.fr/hal-01613090

B. Srinivasan, C. Boussard-pledel, V. Dorcet, M. Samanta, K. Biswas et al., Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi, J. Solid State Chem, vol.2017, issue.4, pp.26-30, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01504059

T. Mori, H. Takaki, K. Kobayashi, M. Shimono, N. Kobayashi et al., Thermoelectric Properties of a Magnetic Semiconductor CuFeS2. Mater. Today Phys, vol.13, pp.85-92, 2017.

K. Vandaele, S. J. Watzman, B. Flebus, A. Prakash, Y. Zheng et al., Thermoelectric Properties of CuGa1?xMnxTe2: Power Factor Enhancement by Incorporation of Magnetic Ions, Thermal Spin Transport and Energy Conversion. Mater. Today Phys, vol.2017, issue.16, pp.7545-7554

Z. Chen, G. Han, L. Yang, L. Cheng, and J. Zou, Nanostructured Thermoelectric Materials: Current Research and Future Challenge, Prog. Nat. Sci. Mater. Int, vol.2012, issue.6, pp.535-549

B. Srinivasan, C. Boussard-pledel, and B. Bureau, Thermoelectric Performance of Codoped (Bi, In)GeTe and, SnTe Materials Processed by Spark Plasma Sintering, vol.230, pp.191-194, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874723

B. Du, F. Gucci, H. Porwal, S. Grasso, A. Mahajan et al., Flash Spark Plasma Sintering of Magnesium Silicide Stannide with Improved Thermoelectric Properties, J. Mater. Chem. C, vol.2017, issue.6, pp.1514-1521

C. Marco;-rashkova-boriana;-raj-rishi, Flash Sintering of Nanograin Zirconia in <5 s at 850°C, J. Am. Ceram. Soc, issue.11, pp.3556-3559, 2010.

M. Yu, S. Grasso, R. Mckinnon, T. Saunders, and M. J. Reece, Review of Flash Sintering: Materials, Mechanisms and Modelling, Adv. Appl. Ceram, vol.116, issue.1, pp.24-60, 2017.

E. A. Olevsky, S. M. Rolfing, A. L. Maximenko, and . Flash, Ultra-Rapid) Spark-Plasma Sintering of Silicon Carbide, Sci. Rep, vol.6, p.33408, 2016.

M. Biesuz, V. M. Sglavo, S. Grasso, E. Kim, T. Saunders et al., Ultra-Rapid Crystal Growth of Textured SiC Using Flash Spark Plasma Sintering Route, J. Eur. Ceram. Soc, vol.46, issue.4, pp.2317-2321, 2016.

G. Salvatore,

S. Theo,

P. Harshit and ;. Omar,

J. Daniel-doni,

L. William and E. John,

W. Fahrenholtz, Flash Spark Plasma Sintering (FSPS) of Pure ZrB2, J. Am. Ceram. Soc, issue.8, pp.2405-2408, 2014.

K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck et al., Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit, Science, issue.5659, pp.818-821, 2004.

H. Wang, J. Li, C. Nan, M. Zhou, W. Liu et al., High-Performance Ag0.8Pb18+xSbTe20 Thermoelectric Bulk Materials Fabricated by Mechanical Alloying and Spark Plasma Sintering, Appl. Phys. Lett, vol.88, issue.9, p.92104, 2006.

M. Zhou, J. Li, and T. Kita, Nanostructured AgPbmSbTem+2 System Bulk Materials with Enhanced Thermoelectric Performance, J. Am. Chem. Soc, vol.130, issue.13, pp.4527-4532, 2008.

M. G. Kanatzidis, Nanostructured Thermoelectrics: The New Paradigm?, Chem. Mater, vol.22, issue.3, pp.648-659, 2010.

J. Pei, B. Zhang, J. Li, and D. Liang, Maximizing Thermoelectric Performance of AgPbmSbTem+2 by Optimizing Spark Plasma Sintering Temperature, J. Alloys Compd, 2017.

B. A. Cook, M. J. Kramer, J. L. Harringa, M. Han, D. Chung et al., Analysis of Nanostructuring in High Figure-of-Merit Ag1-xPbmSbTe2+m Thermoelectric Materials, Adv. Funct. Mater, vol.19, issue.8, pp.1254-1259, 2009.

E. Quarez, K. Hsu, R. Pcionek, N. Frangis, E. K. Polychroniadis et al., Compositional Fluctuations, and Atomic Ordering in the Thermoelectric Materials AgPbmSbTe2+m. The Myth of Solid Solutions, J. Am. Chem. Soc, vol.127, issue.25, pp.9177-9190, 2005.

X. Ke, C. Chen, J. Yang, L. Wu, J. Zhou et al., Microstructure and a Nucleation Mechanism for Nanoprecipitates in PbTe-AgSbTe2, Phys. Rev. Lett, issue.14, p.145502, 2009.

S. Perlt, T. Höche, J. Dadda, E. Müller, P. Bauer-pereira et al., Microstructure Analyses and Thermoelectric Properties of Ag1?xPb18Sb1+yTe20, J. Solid State Chem, vol.2012, pp.58-63

I. U. Arachchige, J. Wu, V. P. Dravid, and M. G. Kanatzidis, Nanocrystals of the Quaternary Thermoelectric Materials: AgPbmSbTem+2 (m = 1-18): Phase-Segregated or Solid Solutions?, Adv. Mater, vol.20, issue.19, pp.3638-3642, 2008.

D. Bilc, S. D. Mahanti, E. Quarez, K. Hsu, R. Pcionek et al., Resonant States in the Electronic Structure of the High Performance Thermoelectrics AgPbmSbTe2+m: The Role of Ag-Sb Microstructures, Phys. Rev. Lett, issue.14, p.146403, 2004.

Y. Zhang, X. Ke, C. Chen, J. Yang, and P. R. Kent, Nanodopant-Induced Band Modulation in AgPbmSbTe2+m-Type Thermoelectrics, Phys. Rev. Lett, issue.20, p.206601, 2011.

H. Hazama, U. Mizutani, and R. Asahi, First-Principles Calculations of Ag-Sb Nanodot Formation in Thermoelectric AgPbmSbTe2+m (M=6,14,30), Phys. Rev. B, issue.11, p.115108, 2006.

K. Ahn, C. Li, C. Uher, and M. G. Kanatzidis, Improvement in the Thermoelectric Figure of Merit by La/Ag Cosubstitution in PbTe, Chem. Mater, vol.21, issue.7, pp.1361-1367, 2009.

M. Han, K. Hoang, H. Kong, R. Pcionek, C. Uher et al., Substitution of Bi for Sb and Its Role in the Thermoelectric Properties and Nanostructuring in Ag1?xPb18MTe20, Chem. Mater, vol.20, issue.10, pp.1121-1127, 2008.

F. Gucci, T. G. Saunders, and M. J. Reece, Situ Synthesis of n-Type Unfilled Skutterudite with Reduced Thermal Conductivity by Hybrid Flash-Spark Plasma Sintering, vol.157, pp.58-61, 2018.
DOI : 10.1016/j.scriptamat.2018.07.028

B. Srinivasan, Realizing a Stable High Thermoelectric zT ? 2 over a Broad Temperature Range in Ge1-x-yGaxSbyTe via Band Engineering and Hybrid Flash-SPS Processing, Inorganic Chemistry Frontiers, 2018.
DOI : 10.1039/c8qi00703a

J. Rodríguez-carvajal, Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction, Phys. B Condens. Matter, vol.192, issue.1, pp.55-69, 1993.

H. Kim, Z. M. Gibbs, Y. Tang, H. Wang, and G. J. Snyder, Characterization of Lorenz Number with Seebeck Coefficient Measurement, APL Mater, vol.2015, issue.4, p.41506
DOI : 10.1063/1.4908244

URL : https://doi.org/10.1063/1.4908244

S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. Probert et al., First Principles Methods Using CASTEP. Z. Für Krist.-Cryst. Mater, vol.220, issue.5/6, pp.567-570, 2009.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, issue.18, pp.3865-3868, 1996.
DOI : 10.1103/physrevlett.77.3865

H. J. Monkhorst and J. D. Pack, Special Points for Brillouin-Zone Integrations, Phys. Rev. B, issue.12, pp.5188-5192, 1976.

P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, and J. Luitz, WIEN2K: An Augmented Plane Wave plus Local Orbitals Program for Calculating Crystal Properties, 2001.

F. Tran, P. Blaha, K. Schwarz, A. F. May, E. S. Toberer et al., Characterization and Analysis of Thermoelectric Transport in N-Type Ba8Ga16?xGe30+x, J. Phys. Condens. Matter, vol.19, issue.19, p.125205, 2007.

E. S. Toberer, A. Zevalkink, N. Crisosto, and G. J. Snyder, The Zintl Compound Ca5Al2Sb6 for LowCost Thermoelectric Power Generation, Adv. Funct. Mater, issue.24, pp.4375-4380, 2010.

T. J. Scheidemantel, C. Ambrosch-draxl, T. Thonhauser, J. V. Badding, and J. O. Sofo, Transport Coefficients from First-Principles Calculations, Phys. Rev. B, issue.12, p.125210, 2003.

G. K. Madsen, Automated Search for New Thermoelectric Materials: The Case of LiZnSb, J. Am. Chem. Soc, vol.128, issue.37, pp.12140-12146, 2006.

G. K. Madsen, D. J. Singh, and . Boltztrap, A Code for Calculating Band-Structure Dependent Quantities, Comput. Phys. Commun, vol.175, issue.1, pp.67-71, 2006.

C. C. Li, F. Drymiotis, L. L. Liao, H. T. Hung, J. H. Ke et al., Interfacial Reactions between PbTe-Based Thermoelectric Materials and Cu and Ag Bonding Materials, J. Mater. Chem. C, vol.2015, issue.40, pp.10590-10596

H. S. Dow, M. W. Oh, B. S. Kim, S. D. Park, B. K. Min et al., Effect of Ag or Sb Addition on the Thermoelectric Properties of PbTe, J. Appl. Phys, vol.2010, issue.11, p.113709

J. He, M. G. Kanatzidis, and V. P. Dravid, High Performance Bulk Thermoelectrics via a Panoscopic Approach, Mater. Today, vol.16, issue.5, pp.166-176, 2013.

L. Zhao, V. P. Dravid, and M. G. Kanatzidis, The Panoscopic Approach to High Performance Thermoelectrics, Energy Environ. Sci, vol.2013, issue.1, pp.251-268

B. Qiu, H. Bao, G. Zhang, Y. Wu, and X. Ruan, Molecular Dynamics Simulations of Lattice Thermal Conductivity and Spectral Phonon Mean Free Path of PbTe: Bulk and Nanostructures, Comput. Mater. Sci, vol.2012, issue.1, pp.278-285

L. Zhang, J. Wang, Z. Cheng, Q. Sun, Z. Li et al., Lead-Free SnTe-Based Thermoelectrics: Enhancement of Thermoelectric Performance by Doping with Gd/Ag, J. Mater. Chem. A, vol.2016, issue.20, pp.7936-7942

P. Jood, M. Ohta, M. Kunii, X. Hu, H. Nishiate et al., Enhanced Average Thermoelectric Figure of Merit of n-Type PbTe1?xIx-MgTe, J. Mater. Chem. C, vol.2015, issue.40, pp.10401-10408

Z. Li and J. Li, Fine-Grained and Nanostructured AgPbmSbTem+2 Alloys with High Thermoelectric Figure of Merit at Medium Temperature, Adv. Energy Mater, vol.2014, issue.2, p.300937

H. Ning, G. D. Mastrorillo, S. Grasso, B. Du, T. Mori et al., Enhanced Thermoelectric Performance of Porous Magnesium Tin Silicide Prepared Using Pressure-Less Spark Plasma Sintering, J. Mater. Chem. A, vol.2015, issue.33, pp.17426-17432

S. N. Girard, K. Schmidt-rohr, T. C. Chasapis, E. Hatzikraniotis, B. Njegic et al., Analysis of Phase Separation in High Performance PbTe-PbS Thermoelectric Materials, Adv. Funct. Mater, vol.23, issue.6, pp.1586-1596, 2013.

A. Orabi, R. Mecholsky, N. A. Hwang, J. Kim, W. Rhyee et al., Low Thermal Conductivity, and High Thermoelectric Figure of Merit in SnTe-CaTe Alloys, Chem. Mater, vol.28, issue.1, pp.376-384, 2016.

G. Tan, F. Shi, J. W. Doak, H. Sun, L. Zhao et al., Extraordinary Role of Hg in Enhancing the Thermoelectric Performance of PType SnTe, Energy Environ. Sci, vol.2014, issue.1, pp.267-277

G. Tan, L. Zhao, F. Shi, J. W. Doak, S. Lo et al., High Thermoelectric Performance of p-Type SnTe via a Synergistic Band Engineering and Nanostructuring Approach, J. Electron. Mater, vol.136, issue.19, pp.869-872, 1999.

J. L. Wang, H. Wang, G. J. Snyder, X. Zhang, Z. H. Ni et al., Characteristics of Lattice Thermal Conductivity and Carrier Mobility of Undoped PbSe-PbS Solid Solutions, J. Phys. Appl. Phys, vol.2013, issue.40, p.405301