J. M. Cock, L. Sterck, P. Rouzé, and D. Scornet, The Ectocarpus genome and the independent evolution of multicellularity in the brown algae, Nature, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00906990

J. A. Correa, J. Castilla, M. Ramirez, and M. Varas, Copper, copper mine tailings and their effect on the marine algae in Northern Chile, J. Appl. Phycol, vol.11, pp.57-67, 1999.

D. R. Livingstone, Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms, Mar. Pollut. Bull, vol.42, pp.656-666, 2001.
DOI : 10.1016/s0025-326x(01)00060-1

M. Gledhill, M. Nimmo, S. J. Hill, and M. T. Brown, The toxicity of copper (II) species to marine algae, with particular reference to macroalgae, J. Phycol, vol.33, pp.2-11, 1997.

W. Maksymiec, Effect of copper on cellular processes in higher plants, Photosynthetica, vol.34, pp.321-342, 1997.

I. Yruela, J. J. Pueyo, P. J. Alonso, and R. Picorel, Photoinhibition of photosystem II from higher plants. Effect of copper inhibition, J. Biol. Chem, vol.271, pp.27408-27415, 1996.

J. C. Fernandes and F. S. Henriques, Biochemical, physiological, and structural effects of excess copper in plants, Bot. Rev, vol.57, pp.246-273, 1991.

B. Halliwell and J. M. Gutteridge, Biologically relevant metal ion-dependent hydroxyl radical generation. An update, FEBS Lett, vol.307, pp.108-112, 1992.
DOI : 10.1016/0014-5793(92)80911-y

B. Halliwell, Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life, Plant Physiol, vol.141, pp.312-322, 2006.

A. J. Baker and J. Proctor, The influence of cadmium, copper, lead, and zinc on the distribution and evolution of metallophytes in the British Isles, Plant Syst. Evol, vol.173, pp.91-108, 1990.

M. R. Macnair, The genetics of metal tolerance in vascular plants, New Phytol, vol.124, pp.541-559, 1993.

M. Pauwels, N. H. Roosens, H. Fré-rot, and P. Saumitou-laprade, When population genetics serves genomics: putting adaptation back in a spatial and historical context, Curr. Opin. Plant Biol, vol.11, pp.129-134, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00222725

M. H. Medina, J. A. Correa, and C. Barata, Micro-evolution due to pollution: possible consequences for ecosystem responses to toxic stress, Chemosphere, vol.67, pp.2105-2114, 2007.

M. Medina, S. Andrade, S. Faugeron, and N. Lagos, Biodiversity of rocky intertidal benthic communities associated with copper mine tailing discharges in northern Chile, Mar. Pollut. Bull, vol.50, pp.396-409, 2005.

A. Hall, Copper accumulation in copper-tolerant and non-tolerant populations of the marine fouling alga Ectocarpus siliculosus (Dillw.) Lyngbye. Bot, vol.24, pp.223-228, 1981.

A. Hall, Heavy metal Co-tolerance in a copper tolerant population of the marine fouling alga, Ectocarpus siliculosus (Dillw.) Lyngbye, New Phytol, vol.85, pp.73-78, 1980.

G. Russel and O. P. Morris, Copper tolerance in marine fouling alga Ectocarpus siliculosus, Nature, vol.228, pp.288-289, 1970.

O. P. Morris and G. Russel, Inter-specific differences in response to copper by natural populations of Ectocarpus, J. Brit. Phycol, vol.9, pp.269-272, 1974.

S. Puig, N. Andres-colas, A. Garcia-molina, and L. Penarrubia, Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications, Plant Cell Environ, vol.30, pp.271-290, 2007.

, Proteomics, vol.10, pp.1-15, 2010.

K. Upper, H. Kroneck, and P. M. , Heavy metal uptake by plants and cyanobacteria, Met. Ions Biol. Syst, vol.44, pp.97-144, 2005.

J. L. Hall, Cellular mechanisms for heavy metal detoxification and tolerance, J. Exp. Bot, vol.53, pp.1-11, 2002.

C. Cobbett and P. Goldsbrough, Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis, Annu. Rev. Plant Biol, vol.53, pp.159-182, 2002.

S. Clemens, Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants, Biochimie, vol.88, pp.1707-1719, 2006.

N. André-s-colá-s, V. Sancenó-n, S. Rodríguez-navarro, and S. Mayo, The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots, Plant J, vol.45, pp.225-236, 2006.

B. Pawlik-skowronska, J. Pirszel, and M. T. Brown, Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat, Aquat. Toxicol, vol.83, pp.190-199, 2007.

C. A. Morris, B. Nicolaus, V. Sampson, and J. L. Harwood, Identification and characterization of a recombinant metallothionein protein from a marine alga, Fucus vesiculosus, Biochem. J, vol.338, pp.553-560, 1999.

G. Toth and H. Pavia, Lack of phlorotannin induction in the brown seaweed Ascophyllum nodosum in response to increased copper concentrations, Mar. Ecol. Progr. Ser, vol.192, pp.119-126, 2000.

L. T. Salgado, L. R. Andrade, and G. M. Filho, Localization of specific monosaccharides in cells of the brown alga Padina gymnospora and the relation to heavy-metal accumulation, Protoplasma, vol.225, pp.123-128, 2005.

S. Sueur, . Van-den, C. M. Berg, and J. P. Riley, Measurement of the metal complexing ability of exudates of marine macroalgae, Limnol. Oceanogr, vol.27, pp.536-543, 1982.

C. S. Karez and R. C. Pereira, Metal contents in polyphenolic fractions extracted from brown alga Padina gymnospora, vol.38, pp.151-155, 1995.

L. R. Andrade, M. Farina, A. Filho, and G. , Role of Padina gymnospora (Dictyotales, Phaeophyceae) cell walls in cadmium accumulation, Phycologia, vol.41, pp.39-48, 2002.

L. Contreras, A. Moenne, and J. A. Correa, Antioxidant responses in Scytosiphon lomentaria (Phaeophyceae) inhabiting copper-enriched coastal environments

, J. Phycol, vol.41, pp.1184-1195, 2005.

E. Pinto, T. C. Sigaud-kutner, M. A. Leitao, and O. K. Okamoto, Heavy metal-induced stress in algae, J. Phycol, vol.39, pp.1008-1018, 2003.

A. Ritter, S. Goulitquer, . Sala, J. Un, and T. Tonon, Copper stress induces biosynthesis of octadecanoid and eicosanoid oxygenated derivatives in the brown algal kelp Laminaria digitata, New Phytol, vol.180, pp.809-821, 2008.

S. L. Baldauf, The deep roots of eukaryotes, Science, vol.300, pp.1703-1706, 2003.

K. Upper, F. C. Carpenter, L. J. Mcfiggans, G. B. Palmer, and C. J. , Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry, Proc. Natl. Acd. Sci, vol.105, pp.6954-6958, 2008.

B. Charrier, S. M. Coelho, A. Le-bail, and T. Tonon, Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research, New Phytol, vol.177, pp.319-332, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01806426

R. Requejo and M. Tena, Proteome analysis of maize roots reveals that oxidative stress is a main contributing factor to plant arsenic toxicity, Phytochem, vol.66, pp.1519-1528, 2005.

J. Sarry, L. Kuhn, C. Ducruix, and A. Lafaye, The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses, Proteomics, vol.6, pp.2180-2198, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00022184

A. P. Smith, B. P. Deridder, W. J. Guo, and E. H. Seeley, Proteomic analysis of Arabidopsis glutathione S-transferases from benoxacor-and copper-treated seedlings, J. Biol. Chem, vol.279, pp.26098-26104, 2004.

C. S. Kung, W. Huang, Y. Huang, and K. Yeh, Proteomic survey of copper-binding proteins in Arabidopsis roots by immobilized metal affinity chromatography and mass spectrometry, Proteomics, vol.6, pp.2746-2758, 2006.

E. Bona, F. Marsano, M. Cavaletto, and G. Berta, Proteomic characterization of copper stress response in Cannabis sativa roots, Proteomics, vol.7, pp.1121-1130, 2007.

L. Contreras, A. Ritter, G. Dennett, and F. Boehmwald, Two-dimesional gel electrophoresis analyses of brown algal protein extracts, J. Phycol, vol.44, pp.1315-1321, 2008.

R. C. Starr and J. A. Zeikus, UTEX-the culture collection of algae at the university of Texas at Austin 1993 list of cultures, J. Phycol, vol.29, pp.1-106, 1993.

L. Bail, A. Dittami, S. De-franco, P. Rousvoal, and S. , Normalisation genes for expression analyses in the brown alga model Ectocarpus siliculosus, BMC Plant Mol. Biol, vol.9, p.75, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01806432

M. M. Bradford, Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding, Anal. Biochem, vol.72, pp.248-254, 1976.

C. Colin, C. Leblanc, G. Michel, and E. Wagner, Vanadium-dependent iodoperoxidases in Laminaria digitata, a novel biochemical function diverging from brown algal bromoperoxidases, J. Biol. Inorg. Chem, vol.10, pp.156-166, 2005.

A. Cid, C. Herrero, E. Torres, and J. Abalde, Copper toxicity on the marine microalga Phaeodactylum tricornutum: effects on photosynthesis and related parameters, Aquat. Toxicol, vol.31, pp.165-174, 1995.

C. Xiang and D. J. Oliver, Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis, Plant Cell, vol.10, pp.1539-1550, 1998.

A. Meister, M. E. Anderson, and . Glutathione, Annu. Rev. Biochem, vol.52, pp.711-760, 1983.

R. G. Alscher, Biosynthesis and antioxidant function of glutathione in plants, Physiol. Plant, vol.77, pp.457-464, 1989.

,. De-franco, S. Rousvoal, T. Tonon, and C. Boyen, Whole genome survey of the glutathione transferase family in the brown algal model Ectocarpus siliculosus, Marine Genomics, vol.1, pp.135-148, 2009.

S. Lee, D. Yoo, J. Son, and K. Cho, Proteomic evaluation of cadmium toxicity on the midge Chironomus riparius Meigen larvae, Proteomics, vol.6, pp.945-957, 2006.

M. Liao, M. Hedley, D. Woolley, and R. Brooks, Copper uptake and translocation in chicory (Cichorium intybus L. cv Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv Rondy) plants grown in NFT system. II. The role of nicotianamine and histidine in xylem sap copper transport, Plant Soil, vol.223, pp.245-254, 2000.

E. Vierling, The roles of heat shock proteins in plants, Annu. Rev. Plant Physiol. Plant Mol. Biol, vol.42, pp.579-620, 1991.

S. Lindquist and E. A. Craig, The heat-shock proteins, Annu. Rev. Gen, vol.22, pp.631-677, 1988.

L. H. Pearl and C. Prodromou, Structure and mechanism of the Hsp90 molecular chaperone machinery, Ann. Rev. Biochem, vol.75, pp.271-294, 2006.

T. Panaretakis, N. Joza, N. Modjtahedi, and A. Tesniere, The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death, Cell Death Differ, vol.15, pp.1499-1509, 2008.

R. Nadimpalli, N. Yalpani, G. S. Johal, and C. R. Simmons, Prohibitins, stomatins, and plant disease response genes compose a protein superfamily that controls cell proliferation, ion channel regulation, and death, J. Biol. Chem, vol.275, pp.29579-29586, 2000.

R. J. Braun and H. Zischka, Mechanisms of Cdc48/VCP-mediated cell death-from yeast apoptosis to human disease, Biochim. Biophys. Acta Mol. Cell Res, vol.1783, pp.1418-1435, 2008.

J. W. Rijstenbil, Effects of UVB radiation and salt stress on growth, pigments and antioxidative defence of the marine diatom Cylindrotheca closterium, Mar. Ecol. Prog. Ser, vol.254, pp.37-47, 2003.

S. K. Clendennen, R. C. Zimmerman, D. A. Powers, and R. S. Alberte, Photosynthetic response of the giant kelp Macrocystis pyrifera (phaeophyceae) to ultraviolet radiation, J. Phycol, vol.32, pp.614-620, 1996.

B. Halliwell and J. Gutterridge, Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J, vol.219, pp.1-14, 1984.
DOI : 10.1042/bj2190001

URL : http://europepmc.org/articles/pmc1153442?pdf=render

I. Yruela, M. Alfonso, M. Baron, and R. Picorel, Copper effect on the protein composition of photosystem II, Physiol. Plant, vol.110, pp.551-557, 2000.

M. Bernal, M. Roncel, J. M. Ortega, and R. Picorel, Copper effect on cytochrome b559 of photosystem II under photoinhibitory conditions, Physiol. Plant, vol.120, pp.686-694, 2004.

T. Henmi, M. Miyao, and Y. Yamamoto, Release and reactiveoxygen-mediated damage of the oxygen-evolving complex subunits of PSII during photoinhibition, Plant Cell Physiol, vol.45, pp.243-250, 2004.

S. Rocak and P. Linder, DEAD-box proteins: the driving forces behind RNA metabolism, Nat. Rev. Mol. Cell. Biol, vol.5, pp.232-241, 2004.
DOI : 10.1038/nrm1335

N. Sanan-mishra, X. H. Pham, S. K. Sopory, and N. Tuteja, Pea DNA helicase 45 overexpression in tobacco confers high salinity tolerance without affecting yield, Proc. Natl. Acad. Sci, vol.102, pp.509-514, 2005.
DOI : 10.1073/pnas.0406485102

URL : http://www.pnas.org/content/102/2/509.full.pdf

Y. Luo, Y. B. Liu, Y. X. Dong, and X. Gao, Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment, J. Plant Physiol, vol.66, pp.385-394, 2009.

C. Leblanc, C. Colin, A. Cosse, and L. Delage, Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases, Biochimie, vol.88, pp.1773-1785, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01590034

K. Upper, F. C. Schweigert, N. , A. Gall, E. Legendre et al., Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide, Planta, vol.207, pp.163-171, 1998.

E. Verhaeghe, A. Fraysse, J. Guerquin-kern, and T. Wu, Microchemical imaging of iodine distribution in the brown alga Laminaria digitata suggests a new mechanism for its accumulation, J. Biol. Inorg. Chem, vol.13, pp.257-269, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00199629

V. Roeder, J. Collen, S. Rousvoal, and E. Corre, Identification of stress gene transcripts in Laminaria digitata (phaeophyceae) protoplast cultures by Expressed Sequence Tag analysis, J. Phycol, vol.41, pp.1227-1235, 2005.