J. He and T. M. Tritt, Advances in thermoelectric materials research: Looking back and moving forward, vol.357, 2017.

Z. Chen, Z. Jian, W. Li, Y. Chang, B. Ge et al., Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence, Adv. Mater, vol.29, 2017.

G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nat. Mater, vol.7, pp.105-114, 2008.

J. He, M. G. Kanatzidis, and V. P. Dravid, High performance bulk thermoelectrics via a panoscopic approach, Mater. Today, vol.16, pp.166-176, 2013.

L. Zhao, V. P. Dravid, and M. G. Kanatzidis, The panoscopic approach to high performance thermoelectrics, Energy Environ. Sci, vol.7, pp.251-268, 2013.

B. Srinivasan, F. Gucci, C. Boussard-pledel, F. Cheviré, M. J. Reece et al., Enhancement in thermoelectric performance of n-type Pb-deficit Pb-Sb-Te alloys, J. Alloys Compd, vol.729, pp.198-202, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01613123

B. Srinivasan, R. Gautier, F. Gucci, B. Fontaine, J. Halet et al., Impact of Coinage Metal Insertion on the Thermoelectric Properties of GeTe Solid-State Solutions, J. Phys. Chem. C, vol.122, pp.227-235, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01709523

B. Srinivasan, A. Gellé, F. Gucci, C. Boussard-pledel, B. Fontaine et al., Realizing a Stable High Thermoelectric zT ~2 over a Broad Temperature Range in Ge 1?x?y Ga x Sb y Te via Band Engineering and Hybrid Flash-SPS Processing, Inorg. Chem. Front, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01952889

B. Srinivasan, C. Boussard-pledel, and B. Bureau, Thermoelectric performance of codoped (Bi, In)-GeTe and (Ag, In, Sb)-SnTe materials processed by Spark Plasma Sintering, Mater. Lett, vol.230, pp.191-194, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01874723

S. Perumal, S. Roychowdhury, and K. Biswas, High performance thermoelectric materials and devices based on GeTe, J. Mater. Chem. C, vol.4, pp.7520-7536, 2016.

S. H. Yang, T. J. Zhu, T. Sun, J. He, S. N. Zhang et al., Nanostructures in high-performance (GeTe) x (AgSbTe 2 ) 100?x thermoelectric materials, Nanotechnology, vol.19, p.245707, 2008.

T. Schröder, S. Schwarzmüller, C. Stiewe, J. De-boor, M. Hölzel et al., The Solid Solution Series (GeTe) x (LiSbTe 2 ) 2 (1 ? x ? 11) and the Thermoelectric Properties of (GeTe) 11 (LiSbTe 2 ) 2, Inorg. Chem, vol.52, pp.11288-11294, 2013.

T. Schröder, T. Rosenthal, N. Giesbrecht, S. Maier, E. Scheidt et al., TAGS-related indium compounds and their thermoelectric properties-The solid solution series (GeTe) x AgIn y Sb 1?y Te 2 (x = 1-12; y = 0.5 and 1), J. Mater. Chem. A, vol.2, pp.6384-6395, 2014.

M. Samanta, S. Roychowdhury, J. Ghatak, S. Perumal, and K. Biswas, Ultrahigh Average Thermoelectric Figure of Merit, Low Lattice Thermal Conductivity and Enhanced Microhardness in Nanostructured (GeTe) x (AgSbSe 2 ) 100?x, Chem. Eur. J, vol.23, pp.7438-7443, 2017.

F. Fahrnbauer, D. Souchay, G. Wagner, and O. Oeckler, High Thermoelectric Figure of Merit Values of Germanium Antimony Tellurides with Kinetically Stable Cobalt Germanide Precipitates, J. Am. Chem. Soc, vol.137, pp.12633-12638, 2015.

Y. Gelbstein and J. Davidow, Highly efficient functional Ge x Pb 1?x Te based thermoelectric alloys, Phys. Chem. Chem. Phys, vol.16, 2014.

S. Perumal, S. Roychowdhury, and K. Biswas, Reduction of thermal conductivity through nanostructuring enhances the thermoelectric figure of merit in Ge 1?x Bi x Te, Inorg. Chem. Front, vol.3, pp.125-132, 2016.

D. Wu, L. Zhao, S. Hao, Q. Jiang, F. Zheng et al., Origin of the High Performance in GeTe-Based Thermoelectric Materials upon Bi 2 Te 3 Doping, J. Am. Chem. Soc, vol.136, pp.11412-11419, 2014.

L. Wu, X. Li, S. Wang, T. Zhang, J. Yang et al., Resonant level-induced high thermoelectric response in indium-doped GeTe, NPG Asia Mater, vol.9, 2017.

L. Yang, J. Q. Li, R. Chen, Y. Li, F. S. Liu et al., Influence of Se Substitution in GeTe on Phase and Thermoelectric Properties, J. Electron. Mater, vol.45, pp.5533-5539, 2016.

S. Perumal, S. Roychowdhury, D. S. Negi, R. Datta, and K. Biswas, High Thermoelectric Performance and Enhanced Mechanical Stability of p-type Ge 1?x Sb x Te, Chem. Mater, vol.27, pp.7171-7178, 2015.

J. K. Lee, M. W. Oh, B. S. Kim, B. K. Min, H. W. Lee et al., Influence of Mn on crystal structure and thermoelectric properties of GeTe compounds, Electron. Mater. Lett, vol.10, pp.813-817, 2014.

Y. Rosenberg, Y. Gelbstein, and M. P. Dariel, Phase separation and thermoelectric properties of the Pb 0.25 Sn 0.25 Ge 0.5 Te compound, J. Alloys Compd, vol.526, pp.31-38, 2012.

J. Li, X. Zhang, S. Lin, Z. Chen, and Y. Pei, Realizing the High Thermoelectric Performance of GeTe by Sb-Doping and Se-Alloying, Chem. Mater, vol.29, pp.605-611, 2017.

M. Samanta and K. Biswas, Low Thermal Conductivity and High Thermoelectric Performance in (GeTe) 1?2x (GeSe) x (GeS) x : Competition between Solid Solution and Phase Separation, J. Am. Chem. Soc, vol.139, pp.9382-9391, 2017.

S. Perumal, P. Bellare, U. S. Shenoy, U. V. Waghmare, and K. Biswas, Low Thermal Conductivity and High Thermoelectric Performance in Sb and Bi Codoped GeTe: Complementary Effect of Band Convergence and Nanostructuring, Chem. Mater, vol.29, pp.10426-10435, 2017.

J. Li, X. Zhang, Z. Chen, S. Lin, W. Li et al., , vol.2, pp.976-987, 2018.

B. Srinivasan, C. Boussard-pledel, V. Dorcet, M. Samanta, K. Biswas et al., Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi. Materials, vol.10, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01504059

B. Srinivasan, B. Fontaine, F. Gucci, V. Dorcet, T. G. Saunders et al., Effect of the Processing Route on the Thermoelectric Performance of Nanostructured CuPb 18 SbTe 20, Inorg. Chem, vol.57, pp.12976-12986, 2018.

B. Srinivasan, S. Cui, C. Prestipino, A. Gellé, C. Boussard-pledel et al., Possible Mechanism for Hole Conductivity in Cu-As-Te Thermoelectric Glasses: A XANES and EXAFS Study, J. Phys. Chem. C, vol.121, pp.14045-14050, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01613090

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, vol.59, pp.1758-1775, 1999.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, pp.11169-11186, 1996.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, pp.3865-3868, 1996.

H. Wang, A. D. Lalonde, Y. Pei, and G. J. Snyder, The Criteria for Beneficial Disorder in Thermoelectric Solid Solutions, Adv. Funct. Mater, vol.23, pp.1586-1596, 2013.

S. Roychowdhury, U. S. Shenoy, U. V. Waghmare, and K. Biswas, Tailoring of Electronic Structure and Thermoelectric Properties of a Topological Crystalline Insulator by Chemical Doping, Angew. Chem. Int. Ed, vol.54, pp.15241-15245, 2015.

L. J. Zhang, P. Qin, C. Han, J. L. Wang, Z. H. Ge et al., Enhanced thermoelectric performance through synergy of resonance levels and valence band convergence via Q/In (Q = Mg, Ag, Bi) co-doping, J. Mater. Chem. A, vol.6, pp.2507-2516, 2018.

M. Hong, Z. Chen, L. Yang, Y. Zou, M. S. Dargusch et al., Realizing zT of 2.3 in Ge 1?x?y Sb x In y Te via Reducing the Phase-Transition Temperature and Introducing Resonant Energy Doping, Adv. Mater, 2018.

Y. Pei, X. Shi, A. Lalonde, H. Wang, L. Chen et al., Convergence of electronic bands for high performance bulk thermoelectrics, Nature, vol.473, pp.66-69, 2011.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license, © 2018 by the authors. Licensee MDPI