N. Ahmed and K. R. Rao, Orthogonal Transforms for Digital Signal Processing, 1975.

A. D. Poularikas, Transforms and Applications Handbook, 2009.

W. H. Zheng, K. L. Li, and K. Q. Li, Scaled radix-2/8 algorithm for efficient computation of length-N =2 m DFTs, IEEE Trans. Signal Process, vol.62, issue.10, pp.2492-2503, 2014.

K. L. Li, W. H. Zheng, and K. Q. Li, A fast algorithm with less operations for length-N =q×2 m DFTs, IEEE Trans. Signal Process, vol.63, issue.3, pp.673-683, 2015.

W. Zheng, K. Li, K. Li, and H. C. So, A modified multiple alignment fast Fourier transform with higher efficiency, IEEE/ACM Trans. Comput. Biol. Bioinf, vol.14, issue.3, pp.634-645, 2017.

Y. A. Geadah and M. J. Corinthios, Natural, dyadic, and sequency order algorithms and processors for the Walsh-Hadamard transform, IEEE Trans. Comput, issue.5, pp.435-442, 1977.

S. Boussakta and A. G. Holt, Fast algorithm for calculation of both Walsh-Hadamard and Fourier transforms (FWFTs), Electron. Lett, vol.25, issue.20, pp.1352-1354, 1989.

D. Sundararajan and M. O. Ahmad, Fast computation of the discrete Walsh and Hadamard transforms, IEEE Trans. Image Process, vol.7, issue.6, pp.898-904, 1998.

S. Rahardja and B. J. Falkowski, Family of unified complex Hadamard transforms, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol.46, issue.8, pp.1094-1100, 1999.

S. Rahardja and B. J. Falkowski, Complex composite spectra of unified complex Hadamard transform for logic functions, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol.47, issue.11, pp.1291-1297, 2000.

S. Xie and S. Rahardja, Performance evaluation for quaternary DS-SSMA communications with complex signature sequences over Rayleigh-fading channels, IEEE Trans. Wireless Commun, vol.4, issue.1, pp.266-277, 2005.

A. Aung, B. P. Ng, and S. Rahardja, Sequency-ordered complex Hadamard transform: Properties, computational complexity and applications, IEEE Trans. Signal Process, vol.56, issue.8, pp.3562-3571, 2008.

A. Aung, B. P. Ng, and S. Rahardja, A robust watermarking scheme using sequency-ordered complex Hadamard transform, J. Signal Process. Syst, vol.64, issue.3, pp.319-333, 2011.

A. Aung, B. P. Ng, and S. Rahardja, Performance of SCHT sequences in asynchronous CDMA system, IEEE Commun. Lett, vol.11, issue.8, pp.641-643, 2007.

B. Wang, J. Wu, H. Shu, and L. Luo, Shape description using sequencyordered complex Hadamard transform, Opt. Commu, vol.284, issue.12, pp.2726-2729, 2011.

G. Bi, A. Aung, and B. P. Ng, Pipelined hardware structure for sequencyordered complex Hadamard transform, IEEE Signal Process. Lett, vol.15, pp.401-404, 2008.

A. Aung and B. P. Ng, Natural-ordered complex Hadamard transform, vol.90, pp.874-879, 2010.

A. Aung, B. P. Ng, and S. Rahardja, Conjugate symmetric sequencyordered complex Hadamard transform, IEEE Trans. Signal Process, vol.57, issue.7, pp.2582-2593, 2009.

S. Bouguezel, M. O. Ahmad, and M. N. Swamy, An efficient algorithm for the conjugate symmetric sequency-ordered complex Hadamard transform, Proc. IEEE ISCAS, pp.1516-1519, 2011.

S. Kyochi and Y. Tanaka, General factorization of conjugate-symmetric Hadamard transforms, IEEE Trans. Signal Process, vol.62, issue.13, pp.3379-3392, 2014.

S. Pei, C. Wen, and J. Ding, Conjugate symmetric discrete orthogonal transform, IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.61, issue.4, pp.284-288, 2014.

D. Jabeen, G. Monir, and F. Azim, Sequency domain signal processing using complex Hadamard transform, Circuits Syst. Signal Process, vol.35, issue.5, pp.1783-1793, 2016.

D. Jabeen and G. Monir, Two-dimensional spatiochromatic signal processing using concept of phasors in sequency domain, Electron. Lett, vol.52, issue.11, pp.968-970, 2016.

G. H. Hostetter, Recursive discrete Fourier transformation, IEEE Trans. Acoust., Speech, Signal Process, vol.28, issue.2, pp.184-190, 1980.

J. Liu and T. Lin, Running DHT and real-time DHT analyser, Electron. Lett, vol.24, issue.12, pp.762-763, 1988.

B. Farhang-boroujeny and Y. C. Lim, A comment on the computational complexity of sliding FFT, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol.39, issue.12, pp.875-876, 1992.

B. Farhang-boroujeny and S. Gazor, Generalized sliding FFT and its application to implementation of block LMS adaptive filters, IEEE Trans. Signal Process, vol.42, issue.3, pp.532-538, 1994.

B. Farhang-boroujeny, Order of N complexity transform domain adaptive filters, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol.42, issue.7, pp.478-480, 1995.

C. Park, Guaranteed-stable sliding DFT algorithm with minimal computational requirements, IEEE Trans. Signal Process, vol.65, issue.20, pp.5281-5288, 2017.

K. Y. Byun, C. S. Park, J. Y. Sun, and S. J. Ko, Vector radix 2 × 2 sliding fast Fourier transform, Math. Problems Eng, vol.2016, 2016.

L. F. Richardson and W. F. Eddy, The 2D tree sliding window discrete Fourier transform, 2017.

Y. Hel-or and H. Hel-or, Real-time pattern matching using projection kernels, IEEE Trans. Pattern Anal. Mach. Intell, vol.27, issue.9, pp.1430-1445, 2005.

W. Ouyang and W. Cham, Fast algorithm for Walsh Hadamard transform on sliding windows, IEEE Trans. Pattern Anal. Mach. Intell, vol.32, issue.1, pp.165-171, 2010.

C. Park, Recursive algorithm for sliding Walsh Hadamard transform, IEEE Trans. Signal Process, vol.62, issue.11, pp.2827-2836, 2014.

J. Wu, H. Shu, L. Wang, and L. Senhadji, Fast algorithms for the computation of sliding sequency-ordered complex Hadamard transform, IEEE Trans. Signal Process, vol.58, issue.11, pp.5901-5909, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00502110

J. S. Wu, L. Wang, L. Senhadji, and H. Z. Shu, Sliding conjugate symmetric sequency-ordered complex Hadamard transform: Fast algorithm and applications, Proc. EUSIPCO, pp.1742-1746, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00530948

J. Wu, L. Wang, G. Yang, L. Senhadji, L. Luo et al., Sliding conjugate symmetric sequency-ordered complex Hadamard transform: Fast algorithm and applications, IEEE Trans. Circuits Syst. I, Reg. Papers, vol.59, issue.6, pp.1321-1334, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00530948

J. A. Macias and A. G. Exposito, Efficient moving-window DFT algorithms, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol.45, issue.2, pp.256-260, 1998.

E. Jacobsen and R. Lyons, The sliding DFT, IEEE Signal Process. Mag, vol.20, issue.2, pp.74-80, 2003.

E. Jacobsen and R. Lyons, An update to the sliding DFT, IEEE Signal Process. Mag, vol.21, issue.1, pp.110-111, 2004.

K. Duda, Accurate, guaranteed stable, sliding discrete Fourier transform, IEEE Signal Process. Mag, vol.27, issue.6, pp.124-127, 2010.

C. S. Park and S. J. Ko, The hopping discrete Fourier transform, IEEE Signal Process. Mag, vol.31, issue.2, pp.135-139, 2014.

C. Park, Fast, accurate, and guaranteed stable sliding discrete Fourier transform, IEEE Signal Process. Mag, vol.32, issue.4, pp.145-156, 2015.

Q. Wang, X. Yan, and K. Qin, High-precision, permanently stable, modulated hopping discrete Fourier transform, IEEE Signal Process. Lett, vol.22, issue.6, pp.748-751, 2015.

D. A. Gudovskiy and L. Chu, An accurate and stable sliding DFT computed by a modified CIC filter, IEEE Signal Process. Mag, vol.34, issue.1, pp.89-93, 2017.

W. Juang, S. Lai, K. Chen, W. Tsai, and C. Luo, Lowcomplexity hopping DFT design based on a compact recursive structure, Electron. Lett, vol.53, issue.1, pp.25-27, 2017.

W. Juang, S. Lai, C. Luo, and S. Lee, VLSI architecture for novel hopping discrete Fourier transform computation, IEEE Access, vol.6, pp.30491-30500, 2018.

C. S. Park, 2D discrete Fourier transform on sliding windows, IEEE Trans. Image Process, vol.24, issue.3, pp.901-907, 2015.

Z. Dong, J. Wu, and J. Y. Gui, A novel sliding window algorithm for 2D discrete Fourier transform, Proc. SPIE, vol.9814, p.981406, 2015.

P. Yip and K. Rao, On the shift property of DCT's and DST's, IEEE Trans. Acoust., Speech, Signal Process, issue.3, pp.404-406, 1987.

N. R. Murthy and M. N. Swamy, On the computation of running discrete cosine and sine transform, IEEE Trans. Signal Process, vol.40, issue.6, pp.1430-1437, 1992.

J. A. Macias and A. G. Exposito, Recursive formulation of short-time discrete trigonometric transforms, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol.45, issue.4, pp.525-527, 1998.

J. Xi and J. F. Chicharo, Computing running DCTs and DSTs based on their second-order shift properties, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl, vol.47, issue.5, pp.779-783, 2000.

V. Kober, Fast algorithms for the computation of sliding discrete sinusoidal transforms, IEEE Trans. Signal Process, vol.52, issue.6, pp.1704-1710, 2004.

C. Park, Two-dimensional discrete cosine transform on sliding windows, Digital Signal Process, vol.58, pp.20-25, 2016.

J. Xi and J. F. Chicharo, Computing running discrete Hartley transform and running discrete W transforms based on the adaptive LMS algorithm, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol.44, issue.3, pp.257-260, 1997.

V. Kober, Fast algorithms for the computation of sliding discrete Hartley transforms, IEEE Trans. Signal Process, vol.55, issue.6, pp.2937-2944, 2007.

J. S. Bhat and C. Vijaya, Sliding discrete fractional transforms, vol.88, pp.247-254, 2008.

R. Tao, Y. Li, and Y. Wang, Short-time fractional Fourier transform and its applications, IEEE Trans. Signal Process, vol.58, issue.5, pp.2568-2580, 2010.

B. Mozafari and M. H. Savoji, An efficient recursive algorithm and an explicit formula for calculating update vectors of running WalshHadamard transform,'' in Proc, IEEE ISSPA, pp.1-4, 2007.

G. Ben-artz, H. Hel-or, and Y. Hel-or, The gray-code filter kernels, IEEE Trans. Pattern Anal. Mach. Intell, vol.29, issue.3, pp.382-393, 2007.

Y. Moshe and H. Hel-or, Video block motion estimation based on graycode kernels, IEEE Trans. Image Process, vol.18, issue.10, pp.2243-2254, 2009.

J. M. Cioffi, Limited-precision effects in adaptive filtering, IEEE Trans. Circuits Syst, issue.7, pp.821-833, 1987.

J. Wu, He is currently with LIST as a Lecturer. His research interest mainly includes deep learning, fast algorithms of digital signal processing and its applications. He received the Eiffel Doctorate Scholarship of Excellence (2009) from the French Ministry of Foreign Affairs and also the Chinese Government Award for Outstanding Self-Financed Student Abroad (2010) from the China Scholarship Council. FUZHI WU received the B.E. degree from Anhui Normal University in 2017, M'09) received the B.S. degree in biomedical engineering from the University of South China, 2012.