
HAL Id: hal-01937631
https://univ-rennes.hal.science/hal-01937631

Submitted on 17 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mapping grassland plant communities using a fuzzy
approach to address floristic and spectral uncertainty
Sébastien Rapinel, Nicolas Rossignol, Laurence Hubert-Moy, Jan-Bernard

Bouzillé, Anne Bonis

To cite this version:
Sébastien Rapinel, Nicolas Rossignol, Laurence Hubert-Moy, Jan-Bernard Bouzillé, Anne Bonis. Map-
ping grassland plant communities using a fuzzy approach to address floristic and spectral uncertainty.
Applied Vegetation Science, 2018, 21 (4), pp.678-693. �10.1111/avsc.12396�. �hal-01937631�

https://univ-rennes.hal.science/hal-01937631
https://hal.archives-ouvertes.fr


Research article 1 

Title: Mapping grassland plant communities using a fuzzy approach to address floristic and 2 

spectral uncertainty 3 

Author names and addresses:  4 

Rapinel, S. (corresponding author, sebastien.rapinel@univ-rennes2.fr) 
1,2

 5 

Rossignol, N. (nicolas.rossignol@univ-rennes1.fr) 
1
 6 

Hubert-Moy, L. (laurence.moy@univ-rennes2.fr) 
2
 7 

Bouzillé, J.B. (jan-bernard.bouzille@univ-rennes1.fr) 
1
 8 

Bonis, A. (anne.bonis@univ-rennes1.fr) 
1(a)

 9 

1 
CNRS UMR 6553 ECOBIO, Université Rennes 1, Avenue Général Leclerc, 35000 Rennes, 10 

France 11 

(a) 
Present address: GEOLAB, UMR 6042 CNRS-UCA 4, rue Ledru 63000 Clermont-Ferrand, 12 

France, anne.bonis@uca.fr 13 

2 
CNRS UMR 6554 LETG, Université Rennes 2, Place du Recteur Henri Le Moal, 35000 14 

Rennes, France 15 

Printed journal page estimate: 10680 words (13.0 pages), tables 1.0 pages, figures 2.0 16 

pages, total 16.0 pages. 17 
 18 

  19 



Abstract:  20 

Aims: The mapping and monitoring of natural vegetation is a challenging but important 21 

objective for environmental management. Although remote sensing has been used to map 22 

plant communities for several years, the maps produced are not sufficiently accurate to meet 23 

management requirements. This can be explained by the cumulative effects of floristic and 24 

spectral uncertainty. The objective of this study was to accurately map grassland plant 25 

communities using a comprehensive fuzzy approach in order to address floristic and spectral 26 

uncertainty. 27 

Location: Sub-brackish wet grasslands, Marais Poitevin, France. 28 

Methods: We first created a compromise typology - floristically and spectrally consistent - to 29 

perform fuzzy noise clustering on a joint PCA matrix derived from vegetation relevés and 30 

remote sensing data. This typology had two levels, which corresponded to spectral signatures 31 

and plant communities, respectively. Second, we mapped grassland plant communities to 32 

predict the fuzzy model from the remote sensing data. We applied this approach using 1- a 33 

very high spatial resolution multispectral satellite image and a LiDAR-derived Digital Terrain 34 

Model acquired on a 73 km² wet grassland site and 2- more than 200 relevés collected in the 35 

field. 36 

Results: The results show that 1- the compromise typology yields significantly higher 37 

mapping accuracy than classic phytosociological typology (62% and 26%, respectively); 2- 38 

compared to a crisp approach, the fuzzy approach improves mapping accuracy by 17 39 

percentage points and 3- a single plant community can be defined by several (1-4) distinct 40 

spectral signatures. 41 

Conclusions: The comprehensive fuzzy procedure successfully mapped herbaceous plant 42 

communities at the ecosystem scale using inexpensive remote sensing data. Floristic and 43 



spectral uncertainty was considered in a fuzzy approach, resulting in the mapping of 9 44 

herbaceous plant communities with acceptable accuracy. As the natural habitats were 45 

characterized at the plant community level, correspondence with functional properties of the 46 

species or with ecosystem services can be easily inferred. These encouraging results open up 47 

new ways to meet the requirements for monitoring the conservation status of natural habitats 48 

in the EU Habitats Directive.   49 

Key-words: LiDAR, noise clustering, phytosociology, Pléiades, remote sensing, vegetation 50 

typology, wetlands. 51 

 52 

Nomenclature: Gargominy et al. (2012) for vascular plants; Bioret et al. (2013) for plant 53 

communities 54 

 55 

Running head: Mapping plant communities using a fuzzy approach 56 
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1 Introduction 58 

Faced with intensive agriculture, urbanization and climate change, the mapping and 59 

monitoring of natural habitats is still a major challenge for conservation management. This 60 

has very important consequences for herbaceous habitats (lawns, meadows) with strong 61 

conservation stakes (Council Directive 92/43/EEC) that cover more than 30% of European 62 

areas (Peeters 2009). Within this context, a spatio-temporal monitoring of natural habitats 63 

over hundreds of km² is needed to meet reporting requirements for the conservation status of 64 

European NATURA 2000 sites. To meet this requirement, natural habitats should be 65 

identified at the plant community level in order to assess the heritage quality (Berg et al. 66 

2014), ecosystem services (Lavorel et al. 2011) and impacts of agricultural practices or water 67 

level management on vegetal biodiversity (Dumont et al. 2012; Stratford et al. 2015). 68 

It seems as though remote sensing data are an attractive resource for monitoring the spatio-69 

temporal dynamics of natural grassland habitats (Vanden Borre et al. 2011). Numerous 70 

studies have pointed out the contribution of satellite imagery for measuring species richness 71 

(Rocchini et al. 2016) or predicting functional traits in grasslands (Lausch et al. 2016). 72 

However, it remains a challenging task to accurately map grassland plant communities using 73 

remote sensing data (Corbane et al. 2015; Lang et al. 2015), due to floristic uncertainty and 74 

spectral uncertainty. The floristic uncertainty is the inevitable probability of misclassifying 75 

vegetation relevés (De Cáceres et al. 2010), which is especially high when handling plant 76 

communities with similar species compositions. Spectral uncertainty is related to the 77 

misclassification of remote sensing data explained by the spectral similarities between plant 78 

communities (Rocchini et al. 2013). The spectral response(s) of a plant community partially 79 

reflect(s) its floristic composition (Rocchini & Cade 2008). Local contrasts in environmental 80 

conditions, such as soil wetness and nutrient contents as well as individual plant interactions, 81 

occur on very small scales, i.e. several square meters (Marion et al. 2010; Dumont et al. 82 



2012). Consequently, the resulting fine-grained mosaic patterns of the vegetation show 83 

variable spectral response(s) (Feilhauer et al. 2013; Kumar & Sinha 2014) and this spectral 84 

variance reduces the distinctiveness of the various plant communities (Ali et al. 2016). 85 

Conversely, grassland plant communities have a similar physiognomy, as they are dominated 86 

by herbaceous graminoid species with a height range between 20 cm and 1 m in general. As a 87 

result, the physiognomic similarity of grassland plant communities smooths out the spectral 88 

variability between them (Rocchini et al. 2013).  89 

To address these issues, many approaches have been developed to accurately map natural 90 

habitats, such as (1) simplifying the vegetation typology at the expense of ecological 91 

consistency, (2) using remote sensing satellite image time series, (3) considering vegetation as 92 

a continuum rather than as plant communities and (4) applying fuzzy approaches:  93 

1. Vegetation typologies have been created to fit spectral data variance, using 94 

multivariate analyses such as canonical correlation analysis or redundancy 95 

discriminant analysis. As a result, the spectral separability of the vegetation units is 96 

improved and the vegetation units are accurately mapped (overall accuracy > 85%, 97 

kappa index > 0.78) (Oldeland et al. 2010; Middleton et al. 2012). However, the 98 

ecological consistency of the vegetation units mapped is altered. In fact, several plant 99 

communities with a similar physiognomy or biomass are merged into the same 100 

vegetation unit. At best, these vegetation units may be related to broad vegetation 101 

classes (e.g. "Sparse grassland and open patches"; "Eutrophic fen") but in no way 102 

correspond to meaningful plant communities sensu stricto, i.e. typology of the plant 103 

associations (Bioret et al. 2013).  104 

2. Several recent studies have investigated the contribution of multispectral satellite data 105 

time series. For example, semi-natural grasslands were accurately mapped (overall 106 

accuracy > 80%) using RapidEye (Schmidt et al. 2014) or Sentinel-2A (Shoko & 107 



Mutanga 2017) multispectral time series. However, only the dominant vegetation 108 

patches were distinguished due to the relatively coarse spatial resolution of these time 109 

series (6-10 m), which is insufficient to identify patches of small, long or thin plant 110 

communities (Roth et al. 2015). Another study highlighted the contribution of 111 

TerraSAR-X time series to accurate mapping of 7 grassland habitats (overall accuracy 112 

90%, kappa index 0.89) with a 2 m spatial resolution (Schuster et al. 2015). However, 113 

these SAR time series remain expensive. 114 

3. Other studies have focused on mapping the floristic continuum rather than mapping 115 

plant communities. For example, the floristic continuum was mapped with high 116 

accuracy (r² > 0.8) using airborne hyperspectral imagery of raised-bog (Schmidtlein et 117 

al. 2007) or heath habitats (Neumann et al. 2015). In addition, Feilhauer et al. (2014) 118 

successfully mapped local variability in complex mire habitats using Rapideye and 119 

Sentinel-2 simulated multispectral imagery (r² > 0.7, overall accuracy 0.71) . 120 

However, these promising approaches are not yet operational for wide use to report 121 

the requirements of Habitat Directive in natural habitats as they have been developed 122 

for specific environments, such as raised bogs, mires or heaths covering a few 123 

hectares; lower accuracy was observed when mapping dry heaths and pioneer 124 

grassland habitats (Neumann et al. 2015). 125 

4. A well-known approach for dealing with uncertainty is the fuzzy approach (Zadeh 126 

1965). Unlike the widely applied crisp approaches, the fuzzy approach assigns a 127 

probability of membership in each class to each individual. This property is useful for 128 

addressing floristic and spectral uncertainty and assessing the confidence level of the 129 

classification of a given plant community to one or more spectral response(s). Until 130 

now, the fuzzy approach has been applied widely to classify vegetation relevés (De 131 

Cáceres et al. 2010; Wiser & Cáceres 2013; Duff et al. 2014) or remote sensing data. 132 



For example, Zlinszky et al. (2014; 2015) mapped herbaceous habitats with 68% and 133 

62% overall accuracy, respectively (kappa index 0.64 and 0.58, respectively), using 134 

point-cloud LiDAR data. But the combined use of fuzzy classification based on both 135 

vegetation and remote sensing data still remains to be investigated (Rocchini 2014). 136 

The objective of this study was to accurately map grassland plant communities using a 137 

comprehensive fuzzy approach in order to address the floristic and spectral uncertainty. To do 138 

this, we first created a vegetation typology that is both ecologically and spectrally consistent 139 

in terms of performing a dimensional scaling of the floristic and spectral values derived from 140 

vegetation relevés and remote sensing data, respectively. Second, we mapped grassland plant 141 

communities using the noise clustering classifier. The strengths and weaknesses of the 142 

methodology proposed will be discussed below. 143 

 144 
 145 

2 Material and methods 146 

2.1 Study area 147 

The study site, a large area spanning 73 km² in a Natura 2000 site, is the second largest 148 

French wetland area, located in the Poitevin marsh, close to the French Atlantic coast 149 

(46.4°N, 1.2°W) (Fig. 1). The climate is oceanic temperate, with a mean monthly 150 

minimum/maximum temperature ranging from 2/10°C in winter to 12/24°C in summer. The 151 

annual mean precipitation ranges from 700 to 900 mm with a summer water deficit. Coming 152 

from a successive embankment since the 10
th

 century, this marsh has a relatively flat 153 

geomorphology with slight depressions. The elevation ranges between 1.5 and 3.5 m above 154 

sea level. The grasslands are extensively grazed or mown. They are composed of sub-brackish 155 

herbaceous plant communities, driven by a flooding pattern (Amiaud et al. 1998) and grazing 156 

pattern (Marion et al. 2010), that correspond to Natura 2000 class 1410.3 (thermo-Atlantic 157 



and sub-brackish meadows), EUNIS class A2.523 (Mediterranean short Juncus, Carex, 158 

Hordeum and Trifolium saltmeadows) and CORINE class 15.52 (Mediterranean short rush, 159 

sedge, barley and clover saltmarshes). 160 

 161 

 162 

The overall methodology developed in this study is detailed in Figure 2. 163 

Fig. 1. Study site and vegetation plot location. False-colour composite of a Pléiades image (© CNES ISIS) 

located in the Poitevin marsh (France). The inserts show a subset of the grassland pattern on the Pléiades 

image (left) and the LiDAR-derived Digital Terrain Model (right). 
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2.2 Vegetation relevés and image sampling 165 
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Fig. 2. Methodological flowchart detailing the comprehensive fuzzy approach. First (top), relevés were 

classified using a fuzzy noise clustering classifier; then (bottom), this fuzzy model was predicted from remote 

sensing data. 
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2.2.1 Step 1. Vegetation relevé sampling 166 

Due to the spatial resolution of the Pléiades imagery (2 m), we selected vegetation relevés 167 

within a 6 m × 6 m quadrat to avoid mixed pixels. Vegetation relevés were collected in the 168 

field from May to June 2015. To stratify the field sampling, unsupervised classification (20 169 

classes) was performed on a Pléiades satellite image acquired in May 2013. This 20-class map 170 

was loaded in the field computer and helped us to identify main spatial patterns within 171 

grasslands. Following the traditional phytosociological rule (Dengler 2017), relevés were 172 

collected within plots with a priori homogeneous floristic composition. For each vegetation 173 

relevé, the number of vascular plant species was recorded (n =111 for all plots) and their 174 

abundance was estimated using the Braun-Blanquet approach (Braun-Blanquet 1932). In total, 175 

220 vegetation relevés were geo-referenced using a differential GPS (error < 0.5 m) and 176 

recorded in the vegetation database TURBOVEG (Hennekens & Schaminée 2001).  177 

2.2.2 Step 2. Spectral sampling 178 

This step associates vegetation relevés with reflectance spectra extracted from remote sensing 179 

data. A multispectral Pléiades image was used in combination with LiDAR (Light Detection 180 

and Ranging) data. We used a multispectral Pléiades image because it presents a good trade-181 

off between cost (€1/km²), spatial resolution and coverage (15 km x 15 km). The Pléiades 182 

image (© CNES ISIS program) was acquired in June 2014 and features a high spatial 183 

resolution (2 m) with 12-bit depth spectral information in the blue (443-550 nm), green (490-184 

610 nm), red (590-710 nm) and near infrared (740-940 nm) regions. The Pléiades image was 185 

delivered at Level-1B, which includes inter-detector normalization, inter-array reconstruction 186 

and geometric corrections (Panem et al. 2012). The image was orthorectified using a LiDAR 187 

Digital Terrain Model (DTM). The horizontal error of the rectified image was less than 1 188 

pixel. The Pléiades image was atmospherically corrected using the MODTRAN-4 model 189 

(Adler-Golden et al. 1999). In addition, we integrated a LiDAR DTM in the vegetation 190 



modelling as vegetation strongly responds to elevation contrasts (Moeslund et al. 2011; 191 

Rapinel et al. 2015; Alexander et al. 2016). Airborne LiDAR data were acquired in November 192 

2011 by the French Mapping Agency (IGN - Institut Géographique National). Only the 193 

LiDAR-derived DTM was subsequently delivered (grid size 1 m, vertical accuracy 0.2 m); the 194 

raw point cloud was unavailable. Although some topographical variables such as the 195 

Topographic Wetness Index (TWI) and Topographic Position Index (TPI) have been relevant 196 

for mapping plant communities in wetlands (Alexander et al. 2016), we did not use them 197 

because 1- the TWI is not suited for wetlands such as the Marais Poitevin, in which 198 

anthropogenic features such as pipes and ditches have altered natural hydrological runoff 199 

(Lindsay & Dhun 2015); and 2- the TPI – which expresses elevation relative to that of the 200 

stream  is scale-dependent (Alexander et al. 2016). To address these concerns, we chose to 201 

express elevation as the depression elevation (Alber & Piégay 2011).This DTM was modified 202 

to be expressed relative to the depression elevation instead of the sea level by subtracting the 203 

absolute value of the DTM from the altimetric reference plan corresponding to the local 204 

depression slope (see Alber & Piégay (2011) for a detailed description of the methodology). 205 

The reflectance spectra associated with the vegetation relevés were taken from the Pléiades 206 

image and the modified DTM. Then, the values of the pixels included within each vegetation 207 

relevé were averaged. To avoid ambiguities between ground data and remote sensing 208 

imagery, we verified the homogeneity of the Pléiades spectral responses when calculating the 209 

Euclidean distance between the spectra within each vegetation relevé. Seven heterogeneous 210 

vegetation relevés were removed, leaving 213 plots for the analysis.  211 

2.3 Creation of a typology using the vegetation relevés 212 

2.3.1 Step 3. Independent PCA applied to the floristic matrix and spectral matrix  213 

This step builds a “joint” matrix that includes both spectral and floristic dimensionally-214 

reduced data. Many studies have shown the interest of unconstrained ordination such as a 215 



principal component analysis (PCA) to summarize the floristic variance (Legendre & 216 

Gallagher 2001). The main advantage of the PCA method compared to the non-metric 217 

multidimensional scaling (NMDS) method is that a difference between the abundance values 218 

for a common species contributes more to the distance than the same difference for a rare 219 

species, so that rare species may have a limited influence on the analysis. Therefore, the PCA 220 

method is better suited to our dataset because plant communities are more likely to differ by a 221 

variation in the abundances of the dominant species rather than the occurrence of rare species. 222 

As a preprocess, the Braun-Blanquet cover values on floristic data were replaced with the 223 

median cover values of each class (1 = 0.03; 2 = 0.13; 3 = 0.375; 4 = 0.625; 5 = 0.875) in 224 

order to linearize the cover values. Then, the cover values were submitted to a Chord 225 

transformation (i.e. divided by the norm). These transformations must be done before 226 

performing a PCA on this type of floristic dataset to ensure that the Euclidean distances 227 

between the vegetation relevés calculated from the plant cover values accurately reflect the 228 

floristic similarities between the relevés (Legendre & Gallagher 2001). We performed two 229 

distinct PCAs: a first PCA on the floristic data and a second PCA on the spectral data. As the 230 

floristic and spectral matrices have completely different value ranges, each dataset was scaled 231 

separately using centered scaling before PCA. Last, we built a “joint” PCA matrix with the n 232 

axes scores of the floristic PCA and the n axes scores of the spectral PCA.  233 

2.3.2 Step 4. Fuzzy noise clustering (unsupervised classification) 234 

This step classifies vegetation relevés into spectrally separable clusters with a fuzzy approach. 235 

In vegetation science, a fuzzy classification recognizes that certain vegetation relevés may 236 

correspond to a transition between many plant communities and as a result, they could have 237 

an uncertain classification. The joint PCA matrix was used as basis for the unsupervised fuzzy 238 

classification of the vegetation relevés. As the joint PCA matrix contains data from both 239 

floristic and spectral PCA, the unsupervised classification should cluster relevés that share 240 



both floristic and spectral similarities. We used a noise clustering classifier (NC) (De Cáceres 241 

et al. 2010), a prototype-based clustering method derived from the C-means (Bezdek et al. 242 

1984), to find c clusters and assign n plots to these c clusters so that the resulting clusters are 243 

compact and distinct from each another. The NC classifier results in a fuzzy classification 244 

because a cluster membership probability is assigned to each vegetation relevé where the sum 245 

of the membership probabilities is equal to 1. The NC classifier also identifies "noise" relevés 246 

resulting from rare spectral or floristic values. The advantage is that "noise" relevés do not 247 

affect the cluster centers. Hence, the centers of interest are ultimately more distinct from each 248 

other (De Caceres 2016). The main input parameters for the NC algorithm are the number of 249 

clusters created by the method (mC), the fuzziness coefficient (m) and the distance to the 250 

noise cluster (δ). A high m value will lead to a classification where the probabilities of 251 

belonging to a cluster are more distributed over several clusters while a low δ value will 252 

increase the number of plots attributed to the noise cluster. Based on preliminary tests 253 

performed on our dataset, we set the intervals of input parameters as follows: mC 15-30 using 254 

a step of 1, m 1.1-1.9 using a step of 0.1 and δ 1.5-2.0 using a step of 0.1. After completing 255 

the fuzzy classification process, we called M1 the resulting membership matrix that gives, for 256 

each vegetation relevé, the respective probabilities of belonging to the different spectrally 257 

homogeneous S clusters, i.e. one with low spectral variance.   258 

2.3.3 Step 5. Hierarchical agglomerative clustering 259 

This step groups the spectrally homogeneous clusters into floristically homogeneous clusters. 260 

Level 1 corresponds to the spectrally homogeneous S clusters (i.e. with low spectral 261 

variability within clusters). They were derived from the NC classifier of the joint PCA matrix 262 

but with classifier parameters that minimized spectral variability to the detriment of floristic 263 

variability. The higher Level 2 corresponds to the floristically homogeneous F clusters (i.e. 264 

with low floristic variability within clusters) that were derived from the initial Level 1 clusters 265 



merged with hierarchical agglomerative clustering based on floristic PCA axes. Here, we 266 

hypothesized that a given plant community (Level 2) may have several distinct spectral 267 

signatures (Level 1). For this reason, it is important to first identify spectrally homogeneous 268 

clusters discernible on remote sensing data. The main input parameter for HAC is the 269 

threshold value, which determines the final number of clusters. As a result, a second 270 

membership matrix M2 containing the probabilities of belonging to the F clusters (Level 2) 271 

was created by summing the membership probabilities of the agglomerated S clusters (Level 272 

1) from M1. Expert-based assignment was then applied between the floristically homogeneous 273 

F clusters (Level 2) and the French phytosociological system (Bioret et al. 2013). 274 

2.3.4 Search for optimal clustering parameters 275 

In order to find the best clustering parameter values (mC, m, δ, HAC threshold), we carried 276 

out a major tuning procedure that repeated steps 3-5 with different combinations of the 277 

parameter values. Our objective was to find an optimal trade-off classification for the 278 

vegetation relevés that respects three criteria: 1- having homogeneous spectral clusters at M1, 279 

2- having homogeneous floristic clusters at M2 and 3- having at least 60% of the vegetation 280 

relevés classified with a maximum membership higher than 0.4. The homogeneous spectral 281 

clustering was assessed based on two geometric indices - the average silhouette value 282 

(Rousseeuw 1987), which geometrically evaluates the quality of the clustering, and Hubert’s 283 

C-index (Hubert & Arabie 1985), which compares the partition obtained with the best 284 

partition that could have been obtained with this number of groups and this distance matrix. 285 

The homogeneous floristic clustering was assessed based on an ecological index, the fidelity 286 

coefficient phi (Chytrý et al. 2002) (only species with phi ≥ 0.2 were considered as diagnostic 287 

species), in combination with average silhouette value and Hubert’s C-index. The average 288 

silhouette value and Hubert’s C-index assess whether the clusters are compact and distinct 289 



from each other while the phi coefficient specifically assesses whether a cluster contains 290 

diagnostic species, which are crucial for identifying vegetation units (De Cáceres et al. 2015). 291 

The optimal clustering parameters were determined to correspond to the maximum (for the 292 

average silhouette value and number of diagnostic species) and minimum values (for Hubert’s 293 

C-index) of three selected indices and should result in the best trade-off classification of the 294 

vegetation relevés with regards to their homogeneous spectral and floristic clusters. 295 

2.4 Fuzzy classification of remotely sensed data  296 

2.4.1 Step 6. Random selection of the relevés 297 

This step randomly assigns each relevé to the calibration or validation dataset. In the 298 

supervised classification of RS data, all relevés, including noise relevés, were used. The 299 

classified vegetation relevés were equally and randomly split into two datasets: 1- the 300 

calibration dataset used for the supervised NC classifier and 2- the validation dataset used to 301 

assess the accuracy of the classified remote sensing data. Both calibration and validation 302 

datasets included the M1 and M2 matrices.  303 

2.4.2 Step 7. Fuzzy noise clustering (supervised classification) 304 

This step applies the noise clustering model to all pixels of the remote sensing image. Usually, 305 

the field samples used to classify remote sensing data have a crisp assignment to a single 306 

cluster. Here, we assume that a vegetation relevé has a probability of belonging to each 307 

cluster. For this reason, the remote sensing data were classified using the NC, which preserves 308 

the fuzzy assignment of the vegetation relevés (see step 4). A supervised classification of 309 

remotely sensed data was performed using the homogeneous spectral matrix M1 in the 310 

calibration dataset. The classification produced a membership matrix CM1 giving, for each 311 

pixel, its probabilities of belonging to each homogeneous spectral cluster. Then, the 312 

memberships of CM1 were summed based on the aggregation rules defined in the HAC 313 



analysis (step 5). This resulted in a CM2 matrix giving, for each pixel, its probabilities of 314 

belonging to each homogeneous floristic cluster. At the end of the classification procedure, a 315 

set of fuzzy maps was produced for each vegetation cluster. To obtain a crisp map of the 316 

vegetation cluster based on crisp classification, the membership matrix CM2 was defuzzified 317 

by attributing, to each pixel, the class for which it had the highest membership probability. In 318 

addition, two other classes were considered: 1- the noise class, generated by the NC classifier 319 

and composed of the outliers, and 2 – the unclassified class, corresponding to pixels with a 320 

maximum CM2 membership probability less than 0.4 (below which there is no clear majority 321 

among clusters). 322 

2.4.3 Step 8. Fuzzy accuracy assessment 323 

This step measures the accuracy of the fuzzy classification of the remote sensing image. The 324 

traditional crisp calculation of the confusion matrix requires the defuzzification of the fuzzy 325 

map. To avoid losing membership information, we chose to calculate a fuzzy confusion 326 

matrix from the fuzzy predicted and reference membership matrices following Binaghi et al. 327 

(1999). Finally, a fuzzy kappa was calculated using Cohen’s kappa coefficient to measure the 328 

agreement between the fuzzy sets proposed by (Dou et al. 2007). Details of the calculations 329 

are given in Appendix S1. Relevés with a maximum membership probability less than 0.4 330 

among the 9 vegetation clusters were considered "unclassified". However, their membership 331 

probabilities were included when calculating the confusion matrix. To compare accuracy 332 

results to those of a traditional crisp classifier, relevés’ membership probability for the noise 333 

class was not considered when assessing the accuracy. 334 

To avoid any bias due to the selection of the calibration and validation data, the remotely 335 

sensed data classification procedure (from step 6 to step 8) was repeated 1000 times with 336 

randomly selected calibration and validation datasets. The classification with the median 337 

overall accuracy value was selected as the final fuzzy classification output. 338 



 339 

2.5 Assessment of the fuzzy noise clustering approach  340 

In order to assess the relevance of our approach to existing ones, we compared the overall 341 

accuracy of the vegetation maps derived from: (i) a fuzzy and a crisp classification, (ii) our 342 

“trade-off” typology with a floristic typology on the one hand and a physiognomic typology 343 

on the other hand. Crisp classification of the remote sensing data was performed using the 344 

crisp vegetation dataset (by defuzzifing the M2 membership matrix, i.e. assigning each relevé 345 

to a vegetation cluster based on its highest membership probability) with a support vector 346 

machine (SVM) algorithm that is widely recognized as the most efficient classifier 347 

(Mountrakis et al. 2011). The optimal calibration model was defined by a 10-fold cross-348 

validation sampling method. The floristic typology was constructed based on the scores of the 349 

floristic PCA axes. Conversely, the physiognomic typology was based on the score of the 350 

spectral PCA axes.  351 

All analyses were performed in the R 3.1.2 statistical environment (R Core Team 2015) using 352 

the packages vegan (v 2.3-4) (Oksanen et al. 2015), vegclust (v 1.6.3) (De Caceres 2016), 353 

ade4 (v 1.7-4) (Dray & Dufour 2007), raster (v 2.5-2) (Hijmans 2015) and rgdal (v 1.1-3) 354 

(Bivand et al. 2015). 355 

 356 

3 Results 357 

3.1 Classification of the vegetation relevés  358 

The numbers of dimensions considered in the floristic and spectral PCA, respectively, were 359 

set to three for each PCA. As a result, the NC classification was performed on PCA matrix M1 360 

which contained six variables explaining 38.1% and 97.8% of the floristic and spectral 361 

variance, respectively. The fuzziness coefficient (m = 1.7) as well as the distance to the noise 362 



cluster (δ = 1.7) values were quite large with the result that 35.2% and 2.3% of the total plots 363 

fell into the unclassified (i.e. maximum class membership < 0.4) and noise clusters, 364 

respectively. The number of initial clusters was set to mC = 15 for M1 and merged to form 365 

nine final clusters (M2) after the agglomerative hierarchical clustering (dt = 0.6). 366 

Figure 3 clearly illustrates the weak relationship between the spectral and floristic variance 367 

and the interest of the nested-level approach: at level 1, the S clusters had similar spectral 368 

values (average silhouette value = 0.15) but quite different floristic values with a high intra-369 

class variance (average silhouette value = 0.10). Conversely at level 2, the F clusters had 370 

similar floristic values (average silhouette value = 0.21; Hubert’s C index= 0.12) and were 371 

characterized by at least one diagnostic species (n = 56) but had quite different spectral values 372 

(average silhouette value = -0.02). As an example, at level 1, clusters S6 and S11 had similar 373 

floristic values that overlap (Fig. 3, upper right) but which could be clearly distinguished by 374 

their clear spectral differences (Fig. 3, upper left). At level 2, these two clusters were merged 375 

together into a F6 cluster with similar floristic values (Fig. 3, bottom right) but with spectral 376 

values spread out between clusters F2 and F5. Dendrogram and silhouette plots are presented 377 

Appendix S2. 378 



 379 

The floristic composition of each final cluster together with the number of initial clusters are 380 

shown in Table 1. Correspondence with the French national nomenclature is also provided 381 

based on expert interpretation and diagnostic species (Table 2). In further detail, clusters F1 to 382 

F2 are typical of hygrophilous (annual flood duration > 4 months) and grazed grasslands: 383 

Fig. 3. Weak relationship between spectral and floristic variance and the utility of the nested-level approach. 

For visualization purposes, scaled principal component analyses (PCA) were performed at level 1 (top) and 

level 2 (bottom) on the spectral (left) and floristic (right) values. Each cluster derived from noise clustering of 

the joint PCA matrix is represented by a code and a colour.  



cluster F1 is related to the Urtico dioicae-Phalaridetum arundinaceae plant community while 384 

cluster F2 corresponds to the Eleocharito palustris-Oenanthetum fistulosae plant community 385 

variation at Ranunculus ophioglossifolius. Cluster F3 is related to meso-hygrophilious (annual 386 

flood duration between 1 and 3 months) and grazed grasslands corresponding to the 387 

Alopecuro bulbosi-Juncetum gerardii plant community. Cluster F4 is related to meso-388 

hygrophilious grasslands with alternative grazing and mowing corresponding to the Trifolio 389 

maritimi-Oenanthetum silaifoliae plant community. Clusters F5 and F6 are related to meso-390 

hygrophilious and mown grasslands corresponding respectively to the Junco gerardi-391 

Oenanthetum fistulosae and Elytrigio repentis-Caricetum divisae plant communities. Clusters 392 

F7 and F8 are very similar and correspond to mesophilious (annual flood duration < 1 month) 393 

and grazed grasslands related to the Carici divisae-Lolietum perennis plant community. 394 

Cluster F8 is found on more intensively grazed grasslands. Cluster F9 is found in mesophilous 395 

grasslands with alternative grazing and mowing phases and corresponds to the Hordeo 396 

secalini-Lolietum perennis plant community. 397 

Notably, four clusters (F2, F5, F6 and F8) are characterized by two or more spectral 398 

signatures (S clusters, level 1) while five other clusters (F1, F3, F4, F7 and F9) are 399 

characterized by one spectral signature (Table 1).   400 



Table 1. Synoptic table of the vegetation units in the Poitevin marsh. Frequency values (in percentages) of the 401 
species in the clusters obtained from the noise clustering classifier. Diagnostic species are indicated in gray (phi 402 
≥ 0.20) and dark gray (phi ≥ 0.40). The full version is available in Appendix S3. 403 

DOMINANT AGRICULTURAL PRACTICES Grazing Mowing Grazing 

ANNUAL FLOOD DURATION 4 months 1-3 months < 1 month 

CLUSTER NAME (LEVEL 2) F1 F2 F3 F4 F5 F6 F7 F8 F9 

NUMBER OF INITIAL CLUSTERS (LEVEL 1) 1 4 1 1 2 2 1 2 1 

Eleocharis uniglumis 43 8        

Phalaris arundinacea 29 3    5    

Agrostis stolonifera 57 97 7 29 46 50 20 100 38 

Glyceria fluitans 43 46   8     

Oenanthe fistulosa 29 74   8 55   38 

Ranunculus repens 14 59   15 10 20   

Eleocharis palustris 57 49   15 5    

Mentha pulegium 14 41   15 5    

Trifolium fragiferum 14 46 7  15    38 

Hordeum marinum  3 87  8  20   

Juncus gerardi  8 100  23 25 40 20 13 

Parapholis strigose   47       

Plantago coronopus   87  23  60 10  

Holcus lanatus  5  100 31 25  10 25 

Festuca arundinacea  3  29  10    

Tragopogon porrifolius    29      

Medicago littoralis    29      

Trifolium pratense    43     13 

Trifolium maritimum   20 86 54 25 100 20  

Anthoxanthum odoratum  3  71 54 20  30 13 

Elytrigia repens  21 20 29 77 100 20 90 38 

Carex divisa  15 53 71 62 95 40 100 13 

Leontodon hispidus       60   

Trifolium subterraneum       40  25 

Hypochaeris radicata    14   40 10 13 

Iris spuria        40  

Bromus racemosus   27 29 8  40 70 25 

Cynosurus cristatus    43 31 10 80 80 38 

Cirsium species        20  

Hordeum secalinum 14 23 20 43 46 10 20 80 63 

Lolium perenne  5 20 43 38 5 100 70 100 

Trifolium repens    14 8   10 38 

Ranunculus acris  3       50 

 404 

 405 

 406 



3.2 Classification of remotely sensed data 407 

The supervised fuzzy noise clustering classification of remotely sensed data produced three 408 

sets of maps: class membership maps for each plant community (Fig. 4, left), an uncertainty 409 

map (Fig. 4, right) and a crisp classification map (Appendix S5). To improve visualization of 410 

the fuzzy classification, class membership maps for each plant community were featured 411 

using hue-preserving colour blending (Chuang et al. 2009). The main advantages are that each 412 

vegetation cluster has a specific colour and that the colour’s saturation level indicates the 413 

certainty of class assignment (Zlinszky & Kania 2016). The spatial distribution of grassland 414 

habitats along wetlands is consistent with their ecological preferendum: for example, cluster 415 

F2 is clearly distributed in topographical depressions and long-term flood areas while clusters 416 

F7 and F8 occur at higher elevations that are rarely flooded. Notably, cluster F3 is linearly 417 

distributed along topographical slopes. Interestingly, the map of the noise cluster highlights 418 

non-grassland habitats such as channels, crops and bare soils but also noisy pixels such as tree 419 

shadows and flooded vegetation. The uncertainty map reveals transitional areas between two 420 

plant communities. 421 



 422 

The iterative process of random selection of calibration and validation dataset shows low 423 

variation in overall accuracy (standard deviation = 1.7). The median fuzzy confusion matrix 424 

shows an overall accuracy of 62% (Table 2). The producer’s accuracy values are higher than 425 

60% for all clusters except for clusters F3, F4 and F9. The user’s accuracy values are higher 426 

than 60% for all clusters, except for clusters F1, F6 and F9. The reference and classified 427 

membership matrices are available in Appendix S4. The importance of spectral bands to 428 

classification accuracy is detailed in Appendix S6. 429 

Fig. 4. Subset of classified vegetation maps derived from the fuzzy noise clustering: the fuzzy blended image 

(left) using the hue-preserving algorithm (see Zlinszky and Kania (2016)) shows gradual transitions between 

classes; the uncertainty image (right) shows areas of high uncertainty in black and more certain areas in white. 



Table 2. Fuzzy accuracy assessment of the map of plant communities derived from remote sensing imagery: 430 
overall accuracy (%), Kappa index, producer’s accuracy (%) and user’s accuracy (%) for each cluster. 431 

Cluster Plant community Producer’s 

Accuracy 

User’s 

Accuracy 

F1 Urtico dioicae - Phalaridetum arundinaceae   60 57 

F2 
Eleocharito palustris-Oenanthetum fistulosae variation at Ranunculus 

ophioglossifolius  

69 60 

F3 Alopecuro bulbosi-Juncetum gerardii  56 60 

F4 Trifolio maritimi-Oenanthetum silaifoliae  43 65 

F5 Junco gerardi - Oenanthetum fistulosae  67 61 

F6 Elytrigio repentis-Caricetum divisae 63 42 

F7 
Carici divisae-Lolietum perennis variation at Plantago coronopus and 

Bellis perennis  

65 63 

F8 Carici divisae-Lolietum perennis  68 68 

F9 Hordeo secalini-Lolietum perennis  40 25 

   

Median overall accuracy 62 %   

Median Kappa index 0.56   

 432 

3.3 Impact of the typology and fuzzy approach on map accuracy 433 

The influence of our trade-off typology and fuzzy approach on map accuracy is presented in 434 

Fig. 5. It highlights a clear trade-off between the overall accuracy of the classification and the 435 

floristic significance of the typology. When the floristic typology is applied (Fig. 5, left), the 436 

clusters have consistent floristic values (average silhouette value = 0.26) but the overall 437 

accuracy of the classification remains very low, either with a fuzzy (25.9%) or a crisp (26.1%) 438 

classification approach. Conversely, when a spectral typology is applied (Fig. 5, right), the 439 

overall accuracy of the classification is excellent either with a fuzzy (92.8%) or crisp (90.6%) 440 

classification approach but the clusters have quite different floristic values (average silhouette 441 

value = -0.03). Using the compromise typology (Fig. 5, middle), the clusters are not only 442 

comprised of similar floristic values (average silhouette value = 0.21) but they also contain 443 

distinct spectral values (overall accuracy = 62%) when a fuzzy classification is performed. In 444 



the case of the compromise typology, the fuzzy classification (overall accuracy = 62%) 445 

significantly outperforms the crisp classification (overall accuracy = 44.8%). 446 

 447 

4 Discussion  448 

The aim of this study was to map grassland plant communities on a large wetland site (73 449 

km²) combining a cost-effective satellite multispectral image and a LiDAR-derived DTM. We 450 

developed a novel approach that combines a compromise typology and a fuzzy approach. The 451 

grassland plant communities were classified and mapped with 62% accuracy (kappa index 452 

0.56), which is acceptable considering the area of the study site, the detailed typology (9 453 

Fig. 5. Trade-off between mapping accuracy (expressed as the overall accuracy percentage) and floristic 

coherence of the typology (expressed as the average silhouette value). Boxplots were calculated from 1000 

iterations of random selection of calibration and validation relevés. 



clusters, each representing a grassland with a similar physiognomy) and the inexpensive 454 

remote sensing data used. In comparison, Kumar and Sinha (2014) achieved an accuracy of 455 

42% using satellite multispectral imagery on a 9.5 km² salt marsh; Roelofsen et al. (2014) 456 

achieved an accuracy of 59% (kappa index 0.46) using airborne hyperspectral imagery alone 457 

on a 12 km² coastal marsh and Zlinszky et al. (2014; 2015) mapped herbaceous habitats with 458 

68% and 62% overall accuracy, respectively (kappa index 0.64 and 0.58, respectively), using 459 

point-cloud LiDAR data of meadows covering a few hectares. The maps we produced appear 460 

to reliably detect and report on plant communities. It provides a valuable source of data to 461 

assess and monitor the conservation status of natural habitats. Together with trait-based maps 462 

(Lausch et al. 2016), this type of floristically-sensitive vegetation map will open up new 463 

avenues for documenting habitat-related ecosystem services. 464 

4.1 Significance of method used to develop the typology 465 

We aimed to develop a vegetation typology that is both ecologically and spectrally consistent 466 

(Fig. 5). Given the weak relationship between spectral variance – derived from inexpensive 467 

multispectral imagery – and floristic composition, a trade-off between the floristic 468 

significance of the clusters and the classification accuracy of the RS data should be taken into 469 

account. As already pointed out (Thomas et al. 2003; Kumar & Sinha 2014; Martínez-López 470 

et al. 2014), a solely floristic-based typology produced an inaccurate classification of remote 471 

sensing data (~25 – 40 %). To address this issue, a common approach is to aggregate plant 472 

communities into vegetation formations such as lawns, sedges, poor fens, bogs, shrubs and 473 

woods (Thomas et al. 2003; Middleton et al. 2012); open dwarf shrub, sparse grassland, and 474 

woody acacia shrub (Oldeland et al. 2010) or mangrove, pasture, dry grass, and salt-marsh 475 

vegetation (Kumar & Sinha 2014). One of the two main advances of our study is to show that 476 

hybrid distance in a multivariate space combining the PCA scores of spectral and floristic data 477 

produced a “compromise” typology – identifying 9 grassland plant communities, each with a 478 



similar physiognomy – that could be accurately mapped. Figure 6 clearly shows that – 479 

compared to the floristic typology – the compromise typology strongly improved RS 480 

classification by 36 points (from 26% to 62%) while preserving the homogeneous floristic 481 

clusters (the average silhouette value decreased slightly from 0.26 to 0.21). 482 

Besides, both plant communities and dominant species can be mapped from hyperspectral 483 

imagery (Schmidtlein et al. 2007), LiDAR point clouds (Zlinszky et al. 2014) or TerraSAR-X 484 

time series (Schuster et al. 2015), but their high cost limits their use. Therefore, one of the 485 

main results of the method was to establish a correspondence between our vegetation units 486 

and the French national reference for natural habitats (Bioret et al. 2013). In this study, 487 

correspondences between clusters and syntaxonomy units were based on expert-based 488 

assignments because the French phytosociological system is not yet stabilized. In the near 489 

future, an improved version of the system will be available based on the VegFrance database, 490 

which includes digital relevés (Bonis & Bouzillé 2012) and the use of numerical approaches 491 

(Tichý et al. 2014). 492 

Several improvements to the development of the typology can be suggested. It should be 493 

recalled that spectral clusters (i.e. canopy reflectance) vary over time (Feilhauer et al. 2016), 494 

as do floristic clusters. To transfer this approach to other sites, satellite images should be 495 

acquired during the optimal period: from maximum development of herbaceous vegetation to 496 

the beginning of mowing. This issue can also be addressed by analyzing annual satellite time 497 

series to examine dynamics of the spectral response of vegetation over time (Schuster et al. 498 

2015; Shoko & Mutanga 2017). Besides, the use of NMDS scaling would result in all of the 499 

floristic variance being found on either two or three axes (Schmidtlein et al. 2007; Feilhauer 500 

et al. 2014) compared with only 38% of the floristic variance, as observed in the PCA we used 501 

in the present study. However, NMDS axes should be carefully interpreted as a function of the 502 

stress value (Clarke 1993). Moreover, NMDS scaling may be influenced by rare species, 503 



which may lead to incorrect interpretations (Legendre & Gallagher 2001). Indeed, preliminary 504 

tests we performed on the dataset showed that PCA produced a clearer pattern than NMDS 505 

due to two “outlier” relevés dominated by Phragmites australis and Phalaris arundinacea 506 

species. The second issue is related to the definition of the number of clusters. In this study, 507 

the reliability of the clusters was assessed with average silhouette value, the number of 508 

diagnostic species and Hubert' C-indexes, usually used in vegetation science for 509 

phytosciological classifications (Douda et al. 2016); however, the effectiveness of the 510 

silhouette method is still an open question (Dengler et al. 2013). Otherwise, the set of field 511 

data upon which the classification of the nine clusters is based consists of 213 plots. In the 512 

near future, it will be useful to check this using more plots. In this regard, the national 513 

vegetation data base is a promising tool (Bonis & Bouzillé 2012). 514 

4.2 Contribution of the fuzzy approach 515 

This study highlights that the integration of floristic and spectral uncertainty by using a fuzzy 516 

approach increased the accuracy of a vegetation map by 17% (Fig. 5). The comprehensive 517 

fuzzy approach we have developed includes: 1-the fuzzy classification of vegetation data, 2-518 

the fuzzy classification of remote sensing data and 3-the fuzzy accuracy assessment of the 519 

resulting map. This approach can be used to consider both the floristic and spectral 520 

uncertainty over the entire analysis, something that has been identified as an important 521 

challenge of vegetation mapping (Rocchini 2014). When the comprehensive fuzzy approach 522 

is not used, the remote-sensing data classification may be biased by an arbitrary expert-based 523 

typology. Thus, it seems that the fuzzy approach is needed to map natural habitats, 524 

specifically those in wetlands where subtle variations in topography and pasturage have a 525 

fine-grained pattern, with progressive transitions between habitats (Dumont et al. 2012); in 526 

the present study, 35% of relevés were not clearly assigned to a vegetation unit (Figure 3). As 527 

a result, the uncertainty map (Figure 4) contains many uncertain pixels (in black), which can 528 



be viewed initially as an obstacle to direct operational use. However, the uncertain pixels also 529 

highlight target areas where additional field relevés are needed (Zlinszky & Kania 2016). 530 

Before analysis, we ensured that relevés were floristically and spectrally homogeneous to 531 

avoid ambiguities between ground data and remote sensing imagery. This common 532 

preliminary step is essential to remove relevés with spurious spectral values, such as those 533 

associated with the presence of clouds or cows (e.g. see Schmidtlein et al. (2007) or 534 

Schmidtlein et al. (2012)). It was all the more necessary as spectral values of pixels were 535 

averaged per relevé; in this sense, we consider that the fuzzy approach addresses uncertainty 536 

between relevés but not within them. In our sampling design, only 7 of the 220 relevés were 537 

discarded (< 2% of the total), because of spectral heterogeneity explained by shallow water on 538 

part of the plot. 539 

Many widely used supervised classifiers, such as support vector machine or random forest, 540 

initially produce fuzzy outcomes before a final crisp classification. Several studies have 541 

shown the contribution of such classifiers to fuzzy mapping of grassland habitats (Zlinszky et 542 

al. 2014; Zlinszky & Kania 2016). In this study, we applied a noise-clustering classifier twice: 543 

first as an unsupervised classifier to classify the pixels corresponding to vegetation relevés 544 

and then as a supervised classifier to classify all the pixels in the image.   545 

4.3 The potential of cost-effective remote sensing data 546 

In this study, we opted for a cost-effective multispectral Pléiades satellite image (€1/km²) and 547 

free national LiDAR-derived DTM rather than expensive RS data. The combined use of one 548 

Pléiades image and a LiDAR-derived DTM resulted in a classification accuracy of 62%. In 549 

accordance with (Feilhauer et al. 2013; Chasmer et al. 2014), we pointed out that LiDAR 550 

DTM and near infrared spectra were important variables to discriminate natural habitats in 551 

wetlands (Appendix S6). Specifically, the contribution of LiDAR DTM (+5% in overall 552 



accuracy) corroborates previous studies highlighting the strong relationship between plant 553 

community distribution and micro-topography in wetlands (Moeslund et al. 2011; Alexander 554 

et al. 2016). It should be kept in mind, however, that this relationship can be biased locally by 555 

water management such as intensive drainage for agriculture or, conversely, water retention 556 

for conservation (Rapinel et al. 2018). Beyond 2-D LiDAR variables, many studies (Zlinszky 557 

et al. 2014; Zlinszky et al. 2015) have also highlighted the contribution of 3-D variables such 558 

as echo width, intensity response and surface roughness to accurately map grassland habitats 559 

(overall accuracy 62-68%, kappa index 0.57-0.64). In this sense, combining multispectral 560 

satellite imagery with point-cloud LiDAR data is a promising avenue for mapping plant 561 

communities. The mapping accuracy may be slightly increased (± 10%) with other cost-562 

effective multispectral satellite imagery such as RapidEye or SPOT-5, which feature 563 

additional red edge and SWIR spectral bands, respectively, and which have been shown to be 564 

relevant to accurately map wetland natural habitats (Davranche et al. 2010; Stenzel et al. 565 

2014). Until now, accuracy greater than 85% could be reached only by using airborne 566 

hyperspectral (Burai et al. 2015) ; hyperspatial resolution imagery from an unmanned aerial 567 

vehicle (Kaneko & Nohara 2014) or full-waveform LiDAR data  (Launeau et al. 2018) of 568 

small sites covering several hectares. However, the new Sentinel time-series with a high 569 

spatial resolution (10 m) seem promising to accurately map natural habitats, using Sentinel-1 570 

SAR (Schmidt et al. 2017) or Sentinel-2 multispectral (Shoko & Mutanga 2017) sensors. 571 

Such time-series satellite images, which are both free and cost-effective, are now available 572 

and appear promising to accurately distinguish between plant communities in the near future.  573 

Considering that the spectral response is partially linked to species composition as well as to 574 

physiognomy, litter thickness, biomass and abiotic variables such as proportion of bare soil 575 

and water content (Feilhauer et al. 2013), we hypothesized that a plant community may show 576 

several spectral signatures. Our results confirmed this hypothesis as four clusters were 577 



characterized by at least two spectral signatures. Specifically, cluster L2, corresponding to a 578 

grazed hygrophilous plant community, has four spectral signatures. In wetland environments, 579 

the presence of water in different proportions may explain this spectral variability from plant 580 

community clusters, as highlighted in some Australian salt marshes (Kumar & Sinha 2014). 581 

Future field campaigns with systematic measurements of the plant species composition 582 

combined with biomass and abiotic variables could be used to explain the relationship 583 

between the spectral responses and floristic composition, as done by Feilhauer et al. (2013). 584 

4.4 A new way to monitor habitats for the UE Directive 585 

Using RS data for application of the EU Habitats Directive has been emphasized for a decade 586 

(Vanden Borre et al. 2011). Most RS studies, however, have focused on the Natura 2000 587 

nomenclature (e.g. Alexandridis et al. 2009; Stenzel et al. 2014; Féret et al. 2015) rather than 588 

on plant communities, which are the “elementary” units of biodiversity (Pott 2011). Rodwell 589 

et al. (2018) and Bioret et al. (2017) recently urged clarifying the actual object of Natura 2000 590 

reporting and the need to consider elementary habitats (i.e. plant communities). The approach 591 

we developed, which was able to map 9 plant communities as “elementary” habitats, opens 592 

avenues to do so. It should kept in mind that these elementary habitats form the basis of the 593 

Natura 2000, CORINE and EUNIS nomenclatures, “though this involvement has been 594 

complex and unclear” (Rodwell et al. 2018). Here, we used RS data to map 9 “elementary” 595 

habitats that are included in the “thermo-Atlantic and sub-brackish meadows” Natura 2000 596 

habitat, which encompasses diverse and even contrary environmental conditions caused by 597 

environmental management such as flood duration (from less than 1 month for Hordeo 598 

secalini-Lolietum perennis up to 4 months for Eleocharito palustris-Oenanthetum fistulosae) 599 

and agricultural practices (grazing for Carici divisae-Lolietum perennis or mowing for Junco 600 

gerardi-Oenanthetum fistulosae). From a structural perspective, each “elementary” habitat 601 

that we mapped could be used as a surrogate of a species pool (Zlinszky et al. 2015) but also 602 



of species richness, stand structural diversity or key species cover (Neumann et al. 2015; 603 

Schmidt et al. 2017). From a functional perspective, these “elementary” habitats – which are 604 

ecologically homogeneous units – could also provide insights into their corresponding 605 

environmental conditions as well as their functional traits (e.g. seed mass), which are 606 

indirectly detectable from RS data (Violle et al. 2011). 607 

One challenge of applying the Habitats Directive is the field sampling effort. In accordance 608 

with Zlinszky & Kania (2016), we believe that the fuzzy map with hue-preserving blending 609 

provides a more realistic view of the complex spatial patterns of natural vegetation and 610 

highlights transitional areas between habitats as well as uncertain areas (Fig. 4). This fuzzy 611 

map provides useful and new guidelines to local managers for planning additional field 612 

relevés and strengthening collaborations between remote sensing and ecologist communities 613 

(Vanden Borre et al. 2011). 614 

Conclusion 615 

The comprehensive fuzzy procedure successfully mapped herbaceous plant communities at 616 

the ecosystem scale using inexpensive remote sensing data. Floristic and spectral uncertainty 617 

was considered in a fuzzy approach, resulting in the mapping of 9 herbaceous plant 618 

communities with acceptable accuracy. As the natural habitats were characterized at the plant 619 

community level, correspondence with functional properties of the species or with ecosystem 620 

services can be easily inferred. These encouraging results open up new ways to meet the 621 

requirements for monitoring the conservation status of natural habitats in the EU Habitats 622 

Directive  623 
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