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Integration of transcriptome 
and proteome profiles in glioblastoma: looking 
for the missing link
Jean‑Michel Lemée1,2* , Anne Clavreul1,2, Marc Aubry3,4, Emmanuelle Com5,6, Marie de Tayrac3,7,8, 
Jean Mosser3,4,7,8 and Philippe Menei1,2

Abstract 

Background: Glioblastoma (GB) is the most common and aggressive tumor of the brain. Genotype‑based 
approaches and independent analyses of the transcriptome or the proteome have led to progress in understanding 
the underlying biology of GB. Joint transcriptome and proteome profiling may reveal new biological insights, and 
identify pathogenic mechanisms or therapeutic targets for GB therapy. We present a comparison of transcriptome 
and proteome data from five GB biopsies (TZ) vs their corresponding peritumoral brain zone (PBZ). Omic analyses 
were performed using RNA microarray chips and the isotope‑coded protein label method (ICPL).

Results: As described in other cancers, we found a poor correlation between transcriptome and proteome data in 
GB. We observed only two commonly deregulated mRNAs/proteins (neurofilament light polypeptide and synapsin 
1) and 12 altered biological processes; they are related to cell communication, synaptic transmission and nervous 
system processes. This poor correlation may be a consequence of the techniques used to produce the omic profiles, 
the intrinsic properties of mRNA and proteins and/or of cancer‑ or GB‑specific phenomena. Of interest, the analysis of 
the transcription factor binding sites present upstream from the open reading frames of all altered proteins identified 
by ICPL method shows a common binding site for the topoisomerase I and p53‑binding protein TOPORS. Its expres‑
sion was observed in 7/11 TZ samples and not in PBZ. Some findings suggest that TOPORS may function as a tumor 
suppressor; its implication in gliomagenesis should be examined in future studies.

Conclusions: In this study, we showed a low correlation between transcriptome and proteome data for GB samples 
as described in other cancer tissues. We observed that NEFL, SYN1 and 12 biological processes were deregulated in 
both the transcriptome and proteome data. It will be important to analyze more specifically these processes and 
these two proteins to allow the identification of new theranostic markers or potential therapeutic targets for GB.
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Background
Glioblastoma (GB) is the most common and aggres-
sive primary tumor in the adult brain. Despite years of 
research and numerous clinical trials, survival remains 
poor [1]. Progresses have been made in understand-
ing the underlying biology of GB thank to work involv-
ing genotype-based approaches and proteome analyses. 

The cancer genome atlas (TCGA) analysis identified 
genetic events that appear to be important in human 
GBs, including (i) deregulation of growth factor signal-
ing via amplification and mutational activation of recep-
tor tyrosine kinase (RTK) genes; (ii) activation of the 
phosphatidyl inositol 3-kinase pathway; and (iii) inacti-
vation of the p53 and retinoblastoma tumor suppressor 
pathways [2]. Genome-wide profiling studies have high-
lighted the existence of molecular subtypes of GB with 
distinct biological features and clinical correlates [3–5]. 
For example, Verhaak et al. [3] described four subtypes of 
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GB: proneural, neural, classical and mesenchymal char-
acterized by abnormalities in PDGFRA, IDH1, EGFR 
and NF1. However, the definition of a Verhaak subtype 
for a whole tumor has been questioned because GBs are 
very heterogeneous tumors and recent studies showed 
that different samples from the same tumor can be of 
different Verhaak subtypes [6, 7]. Proteome profiling of 
human GB samples also revealed a protein cluster (Hun-
tingtin, HNF4α, c-Myc and 14-3-3ζ) that is differentially 
expressed in GB and might also serve as a diagnostic 
marker [8, 9]. The methylation status of MGMT has also 
been identified through omic analyses: this feature pre-
dicts sensitivity to temozolomide, an alkylating agent that 
is the current standard treatment for GB patients [10]. 
Another identified biomarker is the isocitrate dehydroge-
nase 1 (IDH1) mutation, that has been identified and has 
diagnostic applications as it helps in distinguishing pri-
mary from secondary GB [2].

Until recently, the behavior of GB has been studied 
through independent analyses of the transcriptome or of 
the proteome [11–16]. Joint transcriptome and proteome 
profiling may reveal new biological insight, and identify 
pathogenic mechanisms or therapeutic targets for GB 
therapy.

We report the analysis of GB biopsies from five patients 
involving RNA microarray and isotope-coded protein 
label (ICPL) technologies, part of the Grand Ouest Gli-
oma Project, a translational project aiming to study the 
intratumoral heterogeneity in GB [11, 12, 15–20]. The 
transcriptome and the proteome of the GB tumor zone 
(TZ) were defined by comparison with the correspond-
ing peritumoral brain zone (PBZ). The integrated tran-
scriptome and proteome analysis was based on the four 
different approaches described by Haider and Pal [21]: 
(1) intersection of transcriptome and proteome data, (2) 
identification of the common biological processes altered 
in the two datasets (3) identification of the common 
functional pathways altered in the two datasets, (4) top-
ological network methods, with the analysis of the tran-
scription factor binding sites (TFBSs) present upstream 
from the open reading frames of the altered proteins 
identified by ICPL method.

Methods
Patient recruitment
The entire project was approved by the local institutional 
review board (CPP Ouest II) and the Direction Générale 
de la Santé (DGS). All patients included in this study were 
diagnosed for de novo GB (WHO 2007 classification) by 
a central committee of neuropathologists and gave their 
written informed consent prior to their enrolment. Five 
patients (Table 1) with both proteome and transcriptome 
analysis of their TZ and PBZ tissues were selected from 

the databank of the “Grand Ouest Glioma Project”. More 
detailed information on tissue samples characteristics 
can be found in our previous publications [11, 15, 16].

GB and control brain sampling
For each patient, image-guided neuronavigation was 
used during pre-surgical planning to define TZ and PBZ 
samplings sites. The TZ sample (volume around 1  cm3) 
was then collected in the contrast-enhanced area of the 
tumor by computer-assisted, image-guided brain biop-
sies before the surgical resection of the tumor  (Brainlab®, 
La Défense, France). Control brain samples were taken 
from the PBZ to be used as control samples for transcrip-
tomic and proteomic analyses in radiologically normal, 
non-enhancing brain at least 1  cm from the contrast 
enhancing tumor. All the PBZ showed minimal genomic 
alteration (< 1%) and did not show tumor cell infiltra-
tion on histopathological analysis except for the PBZ of 
GB-10 [15].

Samples were transferred to the Department of Pathol-
ogy of the University hospital of Angers, France, for path-
ological diagnostic, and to transcriptomic and proteomic 
platforms in the University hospital of Rennes, France for 
molecular analyses.

Transcriptome analysis
Transcriptome analyses of the tumor samples were per-
formed as previously described in one of our previ-
ous publication on the transcriptomic platform Biosit, 
Rennes, France [16, 22]. In brief, total RNA was isolated 
from the GB samples using the NucleoSpin RNAII kit 
(Macherey–Nagel, Hoerdt, France) and RNA integrity 
(RNA integrity NC8) was assessed with an Agilent 2100 
bioanalyzer (Agilent Technologies, Santa Clara, CA, 
USA). Extraction of RNA microarray data was performed 
with an Agilent Whole Human Genome 4 × 44 K Micro-
array 15 Kit (Agilent technologies), according to the 
manufacturer’s recommendations.

Raw RNA data were then log2-transformed and nor-
malized (quantile normalization and baseline trans-
formation) using R v3.1.0. (http://www.r-proje ct.org). 
For the transcriptomic profile identification, we used 

Table 1 Description of patients’ characteristics

GBO, GB with an oligodendroglial component

Patient ID Age Sex Histology GB variant (Verhaak)

GB‑03 68 F GB Mesenchymal

GB‑10 50 M GB Neural

GB‑16 73 M GB Proneural

GB‑25 61 F GB Proneural

GB‑26 68 M GBO Neural

http://www.r-project.org
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a non-parametric rank product method to account for 
hybridization bias, allowing the identification up- or 
down-regulated genes in pooled GB tumor tissue by 
comparison to the pooled peritumoral brain samples, 
using the RankProd R package. RNAs were considered 
significantly differentially expressed if the false detection 
rate (FDR) was below 0.05 and the absolute fold-change 
between pooled data from TZ vs. PBZ was greater than 2.

Proteome analysis
The protocol for proteome analyses has already been 
described in our previous publications [11, 12]. TZ 
samples were analyzed using ICPL, that allows a high-
throughput identification and quantification of a sample’s 
protein profile [23, 24]. Intact proteins were labeled with 
isotopic derivatives of nicotinic acid of different molecu-
lar weight, then subject to gel liquid chromatography and 
tandem mass spectrometry with an Esquire HCT Ultra 
PTM Discovery mass spectrometer, to identify and quan-
tify proteins.

Peptides were identified by querying the human Swiss-
Prot database with the Mascot search engine (v.2.2.07) 
applying a score above the identity threshold and a 
FDR < 1%. Differentially expressed proteins were identi-
fied in the TZ by comparison to the PBZ samples with a 
threshold > 1.41 for up-regulated proteins and < 0.71 for 
down-regulated proteins, which is above the calculated 
technical variation of the method [11].

Comparison of transcriptome and proteome data
We used four different methods to compare the results 
from the transcriptome and proteome analyses of the GB 
tumor tissues:

(1) We performed a direct comparison of the intersec-
tion of transcripts and proteins found to be deregu-
lated between TZ samples and their correspond-
ing PBZ, to identify the overlap of direct features 
between transcriptome and proteome data. The 
comparison of the results from the transcriptome 
and proteome analyses of the GB tumor tissues was 
performed on pooled patient data and on paired 
patient to reduce the uncertainty due to variability 
between the patients.

(2) We conducted an analysis of the biological and 
functional processes found to be altered in tran-
scriptome and proteome data using DavidGenes 
(http://david .abcc.ncifc rf.gov). The probability of 
alteration of the biological process was calculated 
using one-sided Fisher exact P-value and the False 
Discovery Rate (FDR) was calculated using one-
sided Fisher exact P-value corrected for multiple 

comparisons. Biological and functional processes 
were considered significantly altered in each dataset 
with P and FDR < 0.05.

(3) The functional pathways identified by both tran-
scriptome and proteome data as being altered 
were identified using KEGG database (http://www.
genom e.jp/kegg/pathw ay.html). Functional path-
ways were considered significantly altered in each 
dataset with P < 0.05 corrected for multiple com-
parisons using Benjamini–Hochberg method, and a 
fold-change > 2.

(4) We looked for the presence of direct edges between 
transcripts and proteins with the identification of 
TFBSs in the regulatory region upstream from the 
open reading frames of the proteins identified as 
deregulated in GB. The main objective of this analy-
sis was to identify factors that may bind to (and 
increase the expression of ) the DNA encoding pro-
teins identified in proteome analysis as being over-
expressed. The Multi-genome Analysis of Positions 
and Patterns of Elements of Regulation search 
engine was used, running the set of proteins found 
to be deregulated in GB in our study  (MAPPER2, 
http://genom e.ufl.edu/mappe r/#se). A graphical 
summary of the analysis techniques is available in 
the Additional file 1: Figure S1.

Western blot analysis
TZ and PBZ samples (n = 11) were lysed in RIPA buffer 
containing a protease inhibitor cocktail and PMSF 
(Fisher Scientific, Illkirch, France) at 4  °C for 30  min. 
The lysates were clarified by centrifugation at 14,000g 
at 4  °C for 30 min. Protein concentrations were deter-
mined using the Pierce™ BCA protein assay kit (Fisher 
Scientific) with BSA as the standard, and equal samples 
of proteins (10 μg/lane) from the samples were resolved 
on a 7.5% SDS–polyacrylamide gel. The proteins were 
then electrotransferred onto PVDF membranes. After 
blocking in TBS blocking buffer (Fisher Scientific) at 
4 °C overnight, blots were incubated with the respective 
primary antibodies [anti-actin (Merk Millipore, Guy-
ancourt, France), anti-neurofilament light polypeptide 
(NEFL), anti-synapsin 1 (SYN1) and anti-topoisomer-
ase I binding, arginine/serine-rich, E3 ubiquitin protein 
ligase (TOPORS) (CliniSciences, Nanterre, France)] 
for 2  h at room temperature. Horseradish peroxidase-
conjugated secondary antibodies were then used and 
visualized with an enhanced chemoluminesence (ECL) 
reagent and the LAS4000 digital imaging system (Fisher 
Scientific).

http://david.abcc.ncifcrf.gov
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
http://genome.ufl.edu/mapper/#se
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Results
Direct comparison of deregulated RNA and proteins
The transcriptome pooled analysis with 41,000 probes of 
the five TZ vs PBZ samples identified 478 mRNAs dif-
ferentially expressed between TZ samples and their cor-
responding PBZ samples. A total of 437 non-redundant 
genes were identified; 101 genes were over-expressed in 
the florid TZ, and 300 genes were under-expressed (list 
of differentially expressed probes in Additional file  2: 
Table  S1). Proteome analysis identified 584 non-redun-
dant proteins, and 259 were quantified: 31 proteins were 
found to be up-regulated in the TZ in at least 3/5 patients 
(Full proteome data available in [11]).

The intersection between transcriptome and proteome 
data consisted of two genes: that for the NEFL and that 
for SYN1. They did not show the same deregulation in the 
two omic analyses: transcriptome analysis indicated that 
they are under-expressed in TZ whereas proteome analysis 
indicated that they are over-expressed. The Western blot 
analysis of expression of NEFL and SYN1 in a larger cohort 
of TZ samples and their corresponding PBZ (n = 11) con-
firmed the transcriptomic results; in most cases, an under-
expression of NEFL and SYN1 proteins was observed in 
the TZ (9/11 for NEFL and 10/11 for SYN1) (Fig. 1).

We also performed paired patient-specific comparisons 
to reduce the uncertainty due to variability between the 
patients. We observed similar trends with the pooled data 
TZ vs. PBZ comparisons with a low correlation rate (about 
24%) between transcriptomic and proteomic data (Table 2).

Comparison of altered biological processes
The transcriptomic data indicated that 149 biological pro-
cesses were altered in the tumor samples, and the pro-
teome analysis indicated that 23 biological processes were 
altered (list in Additional file 3: Table S2). Twelve biologi-
cal processes were found to be altered in both datasets, all 
repressed in the transcriptome analysis but enriched in the 
proteome analysis, except for the “regulation of biologi-
cal quality” process, which was enriched in both datasets 
(Table 3).

Comparison of altered functional pathways
The analysis of altered functional pathways using the KEGG 
database found eight upregulated functional pathways 
in transcriptome analysis and two upregulated pathways 
in proteome analysis. There was no significant overlap 
between transcriptome and proteome analyses (Table 4).

Identification of TFBSs
We identified six specific TFBSs present upstream 
from the open reading frames of the altered proteins 

identified (Table 5, Additional file 4: Table S3). Of inter-
est, a binding site for the RING finger protein TOPORS 
was present upstream from the open reading frames of 
all altered proteins. TOPORS was not deregulated at 
the mRNA level in the transcriptomic analysis (Addi-
tional file  4: Table  S3) and it was not identified in the 
proteome analysis. We performed the expression of 
TOPORS by Western blot analysis on 11 TZ biop-
sies and their corresponding PBZ. We didn’t observe 

Fig. 1 Analysis of NEFL, SYN1 and TOPORS expression in TZ biopsies 
and their corresponding PBZ (n = 11). a Distribution of densitometry 
data obtained for NEFL, SYN1 and TOPORS in 11 GB patients. Data are 
presented as TZ/PBZ ratios. b Example of western blot showing the 
expression of NEFL, SYN1, TOPORS and actin in TZ and PBZ samples

Table 2 Patients-paired comparison of  transcriptomic 
and proteomic data

Patients-paired comparison of transcriptomic and proteomic data was based 
on the significantly deregulated transcripts (P < 0.05 and fold-change > 2) 
and proteins between TZ and PBZ. The correlation rate (%) between the two 
modalities is indicated

Patient ID GB-03 GB-10 GB-16 GB-25 GB-26

Number of proteins quanti‑
fied

105 135 114 48 116

Number of altered proteins 50 53 93 76 53

Transcriptomic correlation 26% 14% 27% 25% 26%
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TOPORS expression in PBZ while 7/11 TZ samples 
expressed this protein with a TZ/PBZ ratio of 1.14–2.85 
(Fig. 1).

Discussion
Although the comparison of transcriptomic and pro-
teomic profiles has been done in several cancers, this 
study is the first of which we are aware to compare 
transcriptome and proteome data in a same cohort of 
GBs. Haider and Pal [21] reviewed the existing major 
approaches for joint analysis of transcriptome and pro-
teome data. As recommended by this review, we directly 
compared the deregulated proteins and mRNAs, and 
then compared the functional processes and regulators 
identified in these transcriptome and proteome data sets.

There were few common features in the transcriptome 
and proteome data: they were the deregulation of two 
mRNAs/proteins (NEFL and SYN1) and 12 biological pro-
cesses; they are related to cell communication, synaptic 
transmission and nervous system processes. These find-
ings are consistent with previous reports [11, 16, 38]. No 
biological processes linked to tumorigenesis, for exam-
ple cell cycle regulation, cell metabolism or cell motility, 
were found in both transcriptome and proteome analysis 
to be altered in GB. Some such processes were found in 
one dataset to be altered in GB, for example d-glutamine 
metabolism in the transcriptome and glycolysis/glyco-
neogenesis in the proteome [39, 40]. We observed the 
“pathogenic Escherichia coli infection” enrichment in GB 
through the proteome analysis. Its relation with the GB is 
presently unknown. Considering the involvement of genes 
in multiple biological processes, this enrichment could be 
an artefact. However, recent studies highlight the role of 
microbiota in gastric and breast cancer developments and 
may be present in GB [25, 26]. Further studies are needed 
to reply to this observation.

Although NEFL, SYN1 and twelve biological pro-
cesses were in common between the two omic analyses, 
they did not show the same deregulation (except for the 
“regulation of biological quality” process): transcriptome 
analysis indicated that they are under-expressed in TZ 
whereas proteome analysis indicated that they are over-
expressed. Mismatches of this type between such pairs 
of datasets has already been described [21, 25, 26]; there 
are several possible explanations including translation 

Table 4 Functional pathways altered in transcriptome and proteome analyses in KEGG database

TNC total number of components in each pathway

Pathway Genes Official gene symbol Fold change P-value TNC

Transcriptomic
hsa04080: neuroactive ligand–receptor interaction 18 GABRG1, GABRD, GABRG2, GABRA2, GABRA1, CCKBR, 

GRIN1, OXTR, GABBR2, GRM1, GRIN2C, SSTR1, PRSS2, 
PRSS3, ADRA1B, HTR5A, F2R, HTR2A

3.69 < 0.01 3103

hsa04020: calcium signaling pathway 14 CCKBR, GRIN1, OXTR, ITPKA, GRM1, ATP2B3, GRIN2C, 
ADRA1B, RYR2, CAMK2B, CAMK2A, HTR5A, F2R, 
HTR2A

4.17 < 0.01 3111

hsa04512: ECM-receptor interaction 10 IBSP, COL4A2, COL4A1, CD44, TNC, COL3A1, COL1A2, 
SV2B, COL1A1, FN1

6.24 < 0.01 3125

hsa00910: nitrogen metabolism 4 GLS2, CA9, CA12, GLS 9.12 0.19 3076

hsa04720: long-term potentiation 6 GRIN2C, PPP1R1A, GRIN1, CAMK2B, CAMK2A, GRM1 4.63 0.15 3157

hsa05014: amyotrophic lateral sclerosis 5 SLC1A2, GRIN2C, GRIN1, NEFH, NEFL 4.95 0.24 3125

hsa04510: focal adhesion 9 IBSP, PAK6, COL4A2, COL4A1, TNC, COL3A1, COL1A2, 
COL1A1, FN1

2.35 0.38 3103

hsa00471: d‑glutamine and d‑glutamate metabolism 2 GLS2, GLS 26.21 0.59 3333

Proteomic
hsa05130: pathogenic Escherichia coli infection 5 ACTB, TUBB2A, TUBB2C, TUBB4, YWHAZ 19.39 0.00 30

hsa00010: glycolysis/gluconeogenesis 4 ALDOA, PGAM1, HK1, ENO1 14.74 0.04 30

Table 5 Transcription factor binding sites (TFBSs) 
identified upstream from  the  open reading frames 
encoding the deregulated proteins

P-value: probability of the presence of the TFBS upstream from the open reading 
frame of the protein, corrected for multiple testing using the Benjamini–
Hochberg method

TFBS Proteins with TFBS P-value

bZIP911 MBP 0.05

NIL SYN1 < 0.01

PPARG TUBB4 0.01

PPARG‑RXRA GDI1, MBP, TUBB4 0.01–0.04

RSRFC4 SYN1 0.03

TOPORS/LUN‑1 All < 0.01–0.05
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of mRNAs being up-regulated by RNA binding pro-
teins and/or down-regulation of miRNA targeting these 
mRNAs. Also, the half-lives of mRNAs are very much 
shorter than those of proteins and protein stability may 
be affected by post-translational modifications like phos-
phorylation, acetylation and glycosylation [21, 27–29]. 
Note that Western blot analysis on more TZ/PBZ sam-
ples from other GB patients confirmed the deregulation 
of NEFL and SYN1 at the protein level but in most cases, 
an under-expression of these proteins was observed in 
TZ in line with transcriptomic data. This result highlights 
the importance to have large cohort of patients to limit 
the misinterpretation of the overall transcriptomic and 
proteomic data.

The low correlation between transcriptome and pro-
teome data is not new and not restricted to cancer tis-
sue [28–33]. For example, a correlation of only 17% was 
found between mRNAs and proteins in lung adeno-
carcinoma [28, 34]; in prostate cancer, the correlation 
between gene expression and protein levels is also poor 
to moderate [35]. Song et al. [36] performed proteomic 
profiling of eight GBs and their paired normal brain tis-
sues and afterwards assessed overlap with RNA gene 
expression profiling from GEO and TCGA datasets of 
GBs. They found a correlation of only 2% between the 
differentially expressed proteins and genes from micro-
array. The low overlap between transcriptome and pro-
teome data observed in our study can be explained by 
the general biological phenomena described above 
but also by analytical bias and GB-specific alterations 
(Fig.  2). On the analytical side, the choice of the anal-
ysis technique is crucial in omic studies and directly 
affects both the results and the feasibility of compari-
son between different datasets [37, 38]. RNA micro-
array techniques are the most widely used methods, 
allowing fast and accurate identification of mRNAs 
[39]; however, the number of probes on the microar-
ray chip limits the extent of mRNA detection and probe 
set identification is a source of error in mRNA identifi-
cation [40]. The ICPL method used here for proteome 
analysis allows assessment of protein levels but only a 
fraction of the proteome corresponding to the abun-
dant proteins is analyzed [24]. Furthermore, only 60% of 
the identified proteins in one analysis were quantified. 
Another issue is that correlation coefficients are a crude 
method of measuring associations. For example, they 
do not account for interactions. However, because our 
analysis is based on only five samples it would not be 
meaningful to apply more advanced statistical methods. 
More than these analytical biases, GB tumor tissue pos-
sesses several specific properties that may influence the 
comparison between transcriptome and proteome data. 
GB is by definition an inter- and intra-heterogeneous 

tumor, which complicates the comparison between the 
two different analyses. The inter-heterogeneity is well 
defined at the level of the TZ through the identification 
of several GB subtypes. Recently, we described that this 
inter-heterogeneity was also present at the level of the 
PBZ [15, 18–20]. We identified two extratumoral micro-
environments that can be encountered in the PBZ of GB 
patients: an extratumoral microenvironment containing 
GB-associated stromal cells (GASCs) with procarcino-
genic properties and another containing GASCs with-
out such properties [20]. As these cells may have their 
own specific signatures, this adds a level of complexity 
to make an inter-individual comparison between tran-
scriptome and proteome data. Furthermore, the use 
of mirror samples to perform transcriptome and pro-
teome analyses does not guarantee that the two samples 
are identical due to the intra-heterogeneity of GB [15, 
22]. In our previous studies [16, 31], we confirmed this 
intratumoral heterogeneity at the transcriptomic and 
proteomic levels by comparing four regions of the GB 
(necrotic zone, TZ, interface zone between the tumor 
and the parenchyma and PBZ). The proteomic analysis 
generated a specific dataset of proteins for which a gra-
dient of over-expression was observed from the periph-
ery to the core of the GB [31]. At the transcriptome 
level, we observed that the molecular heterogeneity 
was much more important within tumors than between 
patients [16, 41]. The molecular definition of this intra-
tumoral heterogeneity of GB is still incomplete, but the 
data are rapidly growing. For example, Nobusawa et al. 
[42] observed numerous tumor area-specific genomic 
imbalances, and our previous study as others reported 
inherent intratumor molecular subtype heterogeneity in 
GBs [7, 16, 43]. Other studies showed that RTK ampli-
fications as well as MGMT status are heterogeneously 
distributed in GB [44–46]. More recently, next-genera-
tion sequencing techniques were able to highlight this 
intratumoral heterogeneity, to identify different clonal 
population of GB cells and understand their role in the 
recurrence [47, 48].

Of interest, the search of TFBSs upstream from the 
open reading frames encoding the deregulated pro-
teins that may explain the modification of their level 
of expression revealed a common binding site for 
TOPORS. We observed through Western blot analysis 
an expression of TOPORS in 7/11 TZ samples while 
no expression was evidenced in PBZ. The consultation 
of the Human Protein Atlas is consistent with our data 
where a higher expression of TOPORS was observed 
through immunohistochemistry analysis in 5/11 glioma 
specimens relative to brain tissue [49]. TOPORS is a 
RING finger protein that was identified originally as a 
topoisomerase I-binding protein and as p53-binding 
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protein. TOPORS was shown to function as both a 
ubiquitin and SUMO E3 ligase for p53 [50, 51]. Its over-
expression leads to a proteasome-dependent decrease 
in p53 [50]. Human TOPORS is located on chromo-
some 9p21, a region found frequently altered in several 

different malignancies of which GBs [52]. Some find-
ings suggest that TOPORS may function as a tumor 
suppressor [53, 54]; further studies are needed to clar-
ify the exact clinical significance as well as the exact 
biological function of TOPORS expression in GBs.

Fig. 2 Summary of potential bias when comparing transcriptome and proteome data. This figure summarizes various mechanisms that may alter 
translation, and lead to differences between transcriptome and proteome (Kozak sequence: initiating sequence for translation, located on the 
mRNA; non‑sense read through: misreading of the mRNA in the opposite direction from 3′ to 5′)
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Conclusions
In this study, we showed a low correlation between 
transcriptome and proteome data for GB samples as 
described in other cancer tissues. We recognize that the 
number of studied samples was only five and that only 
a single sample per patient was used indicating that the 
results should be considered observational at this time. 
Future multi-omics studies must be performed on large 
cohort of patients and on spatially distinct tumor frag-
ments per patient to consider the inter- and intra-het-
erogeneity of GBs. This may lead to an interpretation 
accuracy of the overall transcriptomic and proteomic 
data. We observed that NEFL, SYN1 and 12 biologi-
cal processes were deregulated in both the transcrip-
tome and proteome data. It will be important to analyze 
more specifically these processes and these two proteins 
to allow the identification of new theranostic markers 
or potential therapeutic targets for GB. Furthermore, a 
more detailed study of TOPORS which its TFBS was pre-
sent upstream from the open reading frames of all pro-
teins altered between TZ and PBZ may be promising.
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