D. J. Adams, M. D. Eberly, A. Goudie, and C. M. Nylund, Rising vancomycin-resistant Enterococcus infections in hospitalized children in the United States, Hosp. Pediatr, vol.6, pp.404-411, 2016.

P. E. Akpaka, S. Kissoon, P. Jayaratne, C. Wilson, G. R. Golding et al., Genetic characteristics and molecular epidemiology of vancomycin-resistant Enterococci isolates from Caribbean countries, PLoS One, vol.12, 2017.

M. Alonso, M. Marin, C. Iglesias, E. Cercenado, E. Bouza et al., Rapid identification of linezolid resistance in Enterococcus spp. based on high-resolution melting analysis, J. Microbiol. Methods, vol.98, pp.41-43, 2014.

R. I. Aminov, Evolution in action: dissemination of tet(X) into pathogenic microbiota, 2013.

A. Antonelli, M. M. D'andrea, A. Brenciani, C. L. Galeotti, G. Morroni et al., Characterization of poxtA, a novel phenicoloxazolidinone-tetracycline resistance gene from an MRSA of clinical origin, J. Antimicrob. Chemother, 2018.

C. A. Arias and B. E. Murray, The rise of the Enterococcus: beyond vancomycin resistance, Nat. Rev. Microbiol, vol.10, pp.266-278, 2012.

C. A. Arias, D. Panesso, D. M. Mcgrath, X. Qin, M. F. Mojica et al., Genetic basis for in vivo daptomycin resistance in enterococci, N. Engl. J. Med, vol.365, pp.892-900, 2011.

J. Aznar, J. A. Lepe, and M. J. Dowzicky, Antimicrobial susceptibility among E. Faecalis and E. Faecium from France, J. Chemother, vol.24, pp.74-80, 2004.

K. E. Barber, S. T. King, K. R. Stover, and J. M. Pogue, Therapeutic options for vancomycin-resistant enterococcal bacteremia, Expert Rev. Anti. Ther, vol.13, pp.363-377, 2015.

M. Bassetti, P. A. Farrel, D. A. Callan, J. E. Topal, and L. M. Dembry, Emergence of linezolid-resistant Enterococcus faecium during treatment of enterococcal infections, Int. J. Antimicrob. Agents, vol.21, pp.593-594, 2003.

G. Bauer, C. Berens, S. J. Projan, and W. Hillen, Comparison of tetracycline and tigecycline binding to ribosomes mapped by dimethylsulphate and drug-directed Fe2+ cleavage of 16S rRNA, J. Antimicrob. Chemother, vol.53, pp.592-599, 2004.

K. Beabout, T. G. Hammerstrom, A. M. Perez, B. F. Magalhaes, A. G. Prater et al., The ribosomal S10 protein is a general target for decreased tigecycline susceptibility, Antimicrob. Agents Chemother, vol.59, pp.5561-5566, 2015.

K. Beabout, T. G. Hammerstrom, T. T. Wang, M. Bhatty, P. J. Christie et al., Rampant parasexuality evolves in a hospital pathogen during antibiotic selection, Mol. Biol. Evol, vol.32, pp.2585-2597, 2015.

J. K. Bender, C. Fleige, I. Klare, S. Fiedler, A. Mischnik et al., Detection of a cfr(B) variant in german Enterococcus faecium clinical isolates and the impact on linezolid resistance in Enterococcus spp, PLoS One, vol.11, p.167042, 2016.

J. K. Bender, C. Fleige, D. Lange, I. Klare, and G. Werner, Rapid emergence of highly variable and transferable oxazolidinone and phenicol resistance gene optrA in German Enterococcus spp. clinical isolates, Int. J. Antimicrob. Agents, 2018.

J. Bergeron, M. Ammirati, D. Danley, L. James, M. Norcia et al., Glycylcyclines bind to the high-affinity tetracycline ribosomal binding site and evade Tet(M)-and Tet(O)-mediated ribosomal protection, Antimicrob. Agents Chemother, vol.40, pp.2226-2228, 1996.

R. Bi, T. Qin, W. Fan, P. Ma, and B. Gu, The emerging problem of linezolid-resistant enterococci, J. Glob. Antimicrob. Resist, vol.13, pp.11-19, 2017.

M. C. Birmingham, C. R. Rayner, A. K. Meagher, S. M. Flavin, D. H. Batts et al., Linezolid for the treatment of multidrug-resistant, gram-positive infections: experience from a compassionate-use program, Clin. Infect. Dis, vol.36, pp.159-168, 2003.

H. W. Boucher, G. H. Talbot, J. S. Bradley, J. E. Edwards, D. Gilbert et al., Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America, Clin. Infect. Dis, vol.48, pp.1-12, 2009.

A. Brenciani, G. Morroni, C. Vincenzi, E. Manso, M. Mingoia et al., Detection in Italy of two clinical Enterococcus faecium isolates carrying both the oxazolidinone and phenicol resistance gene optrA and a silent multiresistance gene cfr, J. Antimicrob. Chemother, vol.71, pp.1118-1119, 2016.

S. J. Brickner, M. R. Barbachyn, D. K. Hutchinson, and P. R. Manninen, Linezolid (ZYVOX), the first member of a completely new class of antibacterial agents for treatment of serious gram-positive infections, J. Med. Chem, vol.51, pp.1981-1990, 2008.

D. E. Brodersen, W. M. Clemons, A. P. Carter, R. J. Morgan-warren, B. T. Wimberly et al., The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit, Cell, vol.103, pp.1143-1154, 2000.

F. Cafini, T. T. Nguyen-le, M. Higashide, F. Roman, J. Prieto et al., Horizontal gene transmission of the cfr gene to MRSA and Enterococcus: role of Staphylococcus epidermidis as a reservoir and alternative pathway for the spread of linezolid resistance, J. Antimicrob. Chemother, vol.71, pp.587-592, 2016.

J. Cai, Y. Wang, S. Schwarz, G. Zhang, S. Chen et al., High detection rate of the oxazolidinone resistance gene optrA in Enterococcus faecalis isolated from a Chinese anorectal surgery ward, Int. J. Antimicrob. Agents, vol.48, pp.757-759, 2016.

A. M. Casapao, R. Kullar, S. L. Davis, D. P. Levine, J. J. Zhao et al., Multicenter study of high-dose daptomycin for treatment of enterococcal infections, Antimicrob. Agents Chemother, vol.57, pp.4190-4196, 2013.

V. Cattoir, C. Isnard, T. Cosquer, A. Odhiambo, F. Bucquet et al., Genomic analysis of reduced susceptibility to tigecycline in Enterococcus faecium, Antimicrob. Agents Chemother, vol.59, pp.239-244, 2015.

L. M. Cavaco, H. Korsgaard, R. S. Kaas, A. M. Seyfarth, P. Leekitcharoenphon et al., First detection of linezolid resistance due to the optrA gene in enterococci isolated from food products in Denmark, J. Glob. Antimicrob. Resist, vol.9, pp.128-129, 2017.

E. Cercenado and J. Pachon, The EUCORE registry: objectives and general results, 2012.

, Enferm. Infecc. Microbiol. Clin, vol.30, pp.3-9

E. Cercenado, M. Marín, and E. Bouza, Emerging linezolid resistance: dissemination of the cfr gene among Staphylococcus aureus, Staphylococcus epidermidis, enterococcus faecium and Enterococcus faecalis and inability of the Etest method for detection, 50th Interscience Conference on Antimicrobial Agents and Chemotherapy, 2010.

K. Chacko, M. Sullivan, C. Beckford, D. Altman, B. Ciferri et al., The genetic basis of emerging vancomycin, linezolid, and daptomycin heteroresistance in a case of persistent Enterococcus faecium bacteremia, Antimicrob. Agents Chemother, 2018.

H. Chen, W. Wu, M. Ni, Y. Liu, J. Zhang et al., Linezolid-resistant clinical isolates of enterococci and Staphylococcus cohnii from a multicentre study in China: molecular epidemiology and resistance mechanisms, Int. J. Antimicrob. Agents, vol.42, pp.317-321, 2013.

Y. F. Chen, T. L. Sun, Y. Sun, and H. W. Huang, Interaction of daptomycin with lipid bilayers: a lipid extracting effect, Biochemistry, vol.53, pp.5384-5392, 2014.

I. Chopra and M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol, Mol. Biol. Rev, vol.65, pp.232-260, 2001.

B. Coburn, D. E. Low, S. N. Patel, S. M. Poutanen, D. Shahinas et al., Vancomycin-variable Enterococcus faecium: in vivo emergence of vancomycin resistance in a vancomycin-susceptible isolate, J. Clin. Microbiol, vol.52, pp.1766-1767, 2014.

A. Cogo, A. Gonzalez-ruiz, R. Pathan, and K. Hamed, Real-world treatment of complicated skin and soft tissue infections with daptomycin: results from a large European registry (EU-CORE), Infect. Dis. Ther, vol.4, pp.273-282, 2015.

C. Cordina, R. Hill, A. Deshpande, J. Hood, and T. Inkster, Tigecycline-resistant Enterococcus faecalis associated with omeprazole use in a surgical patient, J. Antimicrob. Chemother, vol.67, pp.1806-1807, 2012.

N. Cotroneo, R. Harris, N. Perlmutter, T. Beveridge, and J. A. Silverman, Daptomycin exerts bactericidal activity without lysis of Staphylococcus aureus, Antimicrob. Agents Chemother, vol.52, pp.2223-2225, 2008.

P. Courvalin, Vancomycin resistance in gram-positive cocci, Clin. Infect. Dis, vol.42, issue.1, pp.25-34, 2006.
DOI : 10.1086/491711

URL : https://academic.oup.com/cid/article-pdf/42/Supplement_1/S25/20907068/42-Supplement_1-S25.pdf

L. Cui, Y. Wang, Y. Lv, S. Wang, Y. Song et al., Nationwide surveillance of novel oxazolidinone resistance gene optrA in Enterococcus Isolates in China from, Antimicrob. Agents Chemother, vol.60, pp.7490-7493, 2004.

C. R. Dean, M. A. Visalli, S. J. Projan, P. E. Sum, and P. A. Bradford, Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1, Antimicrob. Agents Chemother, vol.47, pp.972-978, 2003.

M. Debono, B. J. Abbott, R. M. Molloy, D. S. Fukuda, A. H. Hunt et al., Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032), J Antibiot (Tokyo), vol.41, pp.1093-1105, 1988.

L. M. Deshpande, D. S. Ashcraft, H. P. Kahn, G. Pankey, R. N. Jones et al., Detection of a new cfr-like gene, cfr(B), in Enterococcus faecium isolates recovered from human specimens in the United States as part of the SENTRY Antimicrobial Surveillance Program, Antimicrob. Agents Chemother, vol.59, pp.6256-6261, 2015.

L. Diaz, P. Kiratisin, R. E. Mendes, D. Panesso, K. V. Singh et al., Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis, Antimicrob. Agents Chemother, vol.56, pp.3917-3922, 2012.

L. Diaz, T. T. Tran, J. M. Munita, W. R. Miller, S. Rincon et al., Whole-genome analyses of Enterococcus faecium isolates with diverse daptomycin MICs, Antimicrob. Agents Chemother, vol.58, pp.4527-4534, 2014.

A. J. Dipippo, F. P. Tverdek, J. J. Tarrand, J. M. Munita, T. T. Tran et al., Daptomycin non-susceptible Enterococcus faecium in leukemia patients: role of prior daptomycin exposure, J. Clin. Microbiol, vol.74, pp.3951-3953, 2015.

G. M. Eliopoulos, C. Thauvin, B. Gerson, and R. C. Moellering, In vitro activity and mechanism of action of A21978C1, a novel cyclic lipopeptide antibiotic, Antimicrob. Agents Chemother, vol.27, pp.357-362, 1985.

S. Fiedler, J. K. Bender, I. Klare, S. Halbedel, E. Grohmann et al., Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M), J. Antimicrob. Chemother, vol.71, pp.871-881, 2016.

M. Fines and R. Leclercq, Activity of linezolid against Gram-positive cocci possessing genes conferring resistance to protein synthesis inhibitors, J. Antimicrob. Chemother, vol.45, pp.797-802, 2000.

R. K. Flamm, R. E. Mendes, P. A. Hogan, J. M. Streit, J. E. Ross et al., Linezolid Surveillance Results for the United States, Antimicrob. Agents Chemother, vol.60, pp.2273-2280, 2014.

K. J. Forsberg, S. Patel, T. A. Wencewicz, and G. Dantas, The Tetracycline Destructases: A Novel Family of Tetracycline-Inactivating Enzymes, Chem. Biol, vol.22, pp.888-897, 2015.

C. M. Franz, M. Huch, H. Abriouel, W. Holzapfel, and A. Galvez, Enterococci as probiotics and their implications in food safety, Int. J. Food Microbiol, vol.151, pp.125-140, 2011.

A. R. Freitas, C. Novais, R. Correia, M. Monteiro, T. M. Coque et al., Nonsusceptibility to tigecycline in enterococci from hospitalised patients, food products and community sources, Int. J. Antimicrob. Agents, vol.38, pp.174-176, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00711301

A. R. Freitas, C. Novais, A. Read, V. Alves, and L. Peixe, Co-infection with three linezolid-resistant Enterococcus faecium ST117 strain variants: what are we missing in diagnosis?, Int. J. Antimicrob. Agents, vol.47, pp.500-501, 2016.

I. Gawryszewska, D. Zabicka, W. Hryniewicz, and E. Sadowy, Linezolid-resistant enterococci in Polish hospitals: species, clonality and determinants of linezolid resistance, Eur. J. Clin. Microbiol. Infect. Dis, vol.36, pp.1279-1286, 2017.

R. Gomez-gil, M. P. Romero-gomez, A. Garcia-arias, M. G. Ubeda, M. S. Busselo et al., Nosocomial outbreak of linezolid-resistant Enterococcus faecalis infection in a tertiary care hospital, Diagn. Microbiol. Infect. Dis, vol.65, pp.175-179, 2009.

R. D. Gonzales, P. C. Schreckenberger, M. B. Graham, S. Kelkar, K. Denbesten et al., Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid, Lancet, vol.357, p.1179, 2001.
DOI : 10.1016/s0140-6736(00)04376-2

A. Gonzalez-ruiz, P. Gargalianos-kakolyris, A. Timerman, J. Sarma, J. Gonzalez-ramallo et al., Daptomycin in the clinical setting: 8-year experience with Gram-positive bacterial infections from the EU-CORE(SM) registry, Adv. Ther, vol.32, pp.496-509, 2015.

T. H. Grossman, Tetracycline antibiotics and resistance. Cold Spring Harb, Perspect. Med, vol.6, p.25387, 2016.
DOI : 10.1101/cshperspect.a025387

URL : http://europepmc.org/articles/pmc4817740?pdf=render

D. Guo, Y. Liu, C. Han, Z. Chen, and X. Ye, Phenotypic and molecular characteristics of methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolated from pigs: implication for livestock-association markers and vaccine strategies, Infect. Drug Resist, vol.11, pp.1299-1307, 2018.

A. B. Hachmann, E. R. Angert, and J. D. Helmann, Genetic analysis of factors affecting susceptibility of Bacillus subtilis to daptomycin, Antimicrob. Agents Chemother, vol.53, pp.1598-1609, 2009.

A. D. Hall, M. E. Steed, C. A. Arias, B. E. Murray, and M. J. Rybak, Evaluation of standard-and high-dose daptomycin versus linezolid against vancomycin-resistant Enterococcus isolates in an in vitro pharmacokinetic/pharmacodynamic model with simulated endocardial vegetations, Antimicrob. Agents Chemother, vol.56, pp.3174-3180, 2012.

T. A. Hansen, M. S. Pedersen, L. G. Nielsen, C. M. Ma, L. M. Soes et al., Emergence of a vancomycin-variable Enterococcus faecium ST1421 strain containing a deletion in vanX, J. Antimicrob. Chemother, vol.73, pp.2936-2940, 2018.

K. Hayakawa, D. Marchaim, J. M. Pogue, K. Ho, S. Parveen et al., Predictors and outcomes of linezolid-resistant vancomycin-resistant Enterococcus: a case-case-control study, Am. J. Infect. Control, vol.40, pp.261-263, 2012.

T. He, Y. Shen, S. Schwarz, J. Cai, Y. Lv et al., Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin, J. Antimicrob. Chemother, vol.71, pp.1466-1473, 2016.

K. Hegstad, T. Mikalsen, T. M. Coque, G. Werner, and A. Sundsfjord, Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium, Clin. Microbiol. Infect, vol.16, pp.541-554, 2010.

K. Hegstad, J. A. Longva, R. Hide, B. Aasnaes, T. M. Lunde et al., Cluster of linezolid-resistant Enterococcus faecium ST117 in Norwegian hospitals, Scand. J. Infect. Dis, vol.46, pp.712-715, 2014.

I. A. Herrero, N. C. Issa, and R. Patel, Nosocomial spread of linezolid-resistant, vancomycin-resistant Enterococcus faecium, N. Engl. J. Med, vol.346, pp.867-869, 2002.
DOI : 10.1056/nejm200203143461121

S. W. Ho, D. Jung, J. R. Calhoun, J. D. Lear, M. Okon et al., Effect of divalent cations on the structure of the antibiotic daptomycin, Eur. Biophys. J, vol.37, pp.421-433, 2008.

D. J. Hoban, R. R. Reinert, S. K. Bouchillon, and M. J. Dowzicky, Global in vitro activity of tigecycline and comparator agents: tigecycline Evaluation and Surveillance Trial, Ann. Clin. Microbiol. Antimicrob, vol.14, p.27, 2004.

E. S. Honsa, V. S. Cooper, M. N. Mhaissen, M. Frank, J. Shaker et al., RelA mutant Enterococcus faecium with multiantibiotic tolerance arising in an immunocompromised host, MBio, vol.8, 2017.

R. Hua, Y. Xia, W. Wu, J. Yan, and M. Yang, Whole transcriptome analysis reveals, Drug Resistance Updates, vol.40, pp.25-39, 2018.

, potential novel mechanisms of low-level linezolid resistance in Enterococcus faecalis, Gene, vol.647, pp.143-149

J. Huang, L. Chen, Z. Wu, and L. Wang, Retrospective analysis of genome sequences revealed the wide dissemination of optrA in Gram-positive bacteria, J. Antimicrob. Chemother, vol.72, pp.614-616, 2017.

R. M. Humphries, T. Kelesidis, R. Tewhey, W. E. Rose, N. Schork et al., Genotypic and phenotypic evaluation of the evolution of high-level daptomycin nonsusceptibility in vancomycin-resistant Enterococcus faecium, Antimicrob. Agents Chemother, vol.56, pp.6051-6053, 2012.

R. M. Humphries, S. Pollett, and G. Sakoulas, A current perspective on daptomycin for the clinical microbiologist, Clin. Microbiol. Rev, vol.26, pp.759-780, 2013.

L. Jenner, A. L. Starosta, D. S. Terry, A. Mikolajka, L. Filonava et al., Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis, Proc Natl Acad Sci U S A, vol.110, pp.3812-3816, 2013.

A. P. Johnson, A. H. Uttley, N. Woodford, and R. C. George, Resistance to vancomycin and teicoplanin: an emerging clinical problem, Clin. Microbiol. Rev, vol.3, pp.280-291, 1990.

D. Jung, A. Rozek, M. Okon, and R. E. Hancock, Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin, Chem. Biol, vol.11, pp.949-957, 2004.

D. Jung, J. P. Powers, S. K. Straus, and R. E. Hancock, Lipid-specific binding of the calcium-dependent antibiotic daptomycin leads to changes in lipid polymorphism of model membranes, Chem. Phys. Lipids, vol.154, pp.120-128, 2008.

Y. H. Jung, Y. S. Lee, S. Y. Lee, J. S. Yoo, J. I. Yoo et al., Structure and transfer of the vanA cluster in vanA-positive, vancomycin-susceptible Enterococcus faecium, and its revertant mutant, Diagn. Microbiol. Infect. Dis, vol.80, pp.148-150, 2014.

G. W. Kaatz, F. Mcaleese, and S. M. Seo, Multidrug resistance in Staphylococcus aureus due to overexpression of a novel multidrug and toxin extrusion (MATE) transport protein, Antimicrob. Agents Chemother, vol.49, pp.1857-1864, 2005.

M. A. Kainer, R. A. Devasia, T. F. Jones, B. P. Simmons, K. Melton et al., Response to emerging infection leading to outbreak of linezolid-resistant enterococci, Emerg Infect Dis, vol.13, pp.1024-1030, 2007.

I. Klare, C. Fleige, U. Geringer, A. Thurmer, J. Bender et al., Increased frequency of linezolid resistance among clinical Enterococcus faecium isolates from German hospital patients, J. Glob. Antimicrob. Resist, vol.3, pp.128-131, 2015.

P. Kloss, L. Xiong, D. L. Shinabarger, and A. S. Mankin, Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center, J. Mol. Biol, vol.294, pp.93-101, 1999.

E. M. Klupp, A. Both, C. Belmar-campos, H. Buttner, C. Konig et al., Tedizolid susceptibility in linezolid-and vancomycin-resistant Enterococcus faecium isolates, Eur. J. Clin. Microbiol. Infect. Dis, vol.35, pp.1957-1961, 2016.

A. Kolonen, M. Sinisalo, R. Huttunen, J. Syrjanen, J. Aittoniemi et al., Bloodstream infections in acute myeloid leukemia patients treated according to the Finnish Leukemia Group AML-2003 protocol-a prospective nationwide study, Infect. Dis. Lond. (Lond), vol.49, pp.799-808, 2017.

B. Krawczyk, A. Samet, M. Bronk, A. Hellmann, and J. Kur, Emerging linezolidresistant, vancomycin resistant Enterococcus faecium from a patient of a haematological unit in Poland, Pol. J. Microbiol, vol.53, pp.193-196, 2004.

M. Kresken, E. Leitner, H. Seifert, G. Peters, and C. Von-eiff, Susceptibility of clinical isolates of frequently encountered bacterial species to tigecycline one year after the introduction of this new class of antibiotics: results of the second multicentre surveillance trial in Germany (G-TEST II, Eur. J. Clin. Microbiol. Infect. Dis, vol.28, pp.1007-1011, 2007.

M. Kresken, K. Becker, H. Seifert, E. Leitner, B. Korber-irrgang et al., Resistance trends and in vitro activity of tigecycline and 17 other antimicrobial agents against Gram-positive and Gram-negative organisms, including multidrug-resistant pathogens, in Germany, Eur. J. Clin. Microbiol. Infect. Dis, vol.30, pp.1095-1103, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00673675

M. Krull, I. Klare, B. Ross, R. Trenschel, D. W. Beelen et al., Emergence of linezolid-and vancomycin-resistant Enterococcus faecium in a department for hematologic stem cell transplantation, Antimicrob. Resist. Infect. Control, vol.5, p.31, 2016.

A. Kuch, R. J. Willems, G. Werner, T. M. Coque, A. M. Hammerum et al., Insight into antimicrobial susceptibility and population structure of contemporary human Enterococcus faecalis isolates from Europe, J. Antimicrob. Chemother, vol.67, pp.551-558, 2012.

M. Kumaraswami, J. T. Schuman, S. M. Seo, G. W. Kaatz, and R. G. Brennan, Structural and biochemical characterization of MepR, a multidrug binding transcription regulator of the Staphylococcus aureus multidrug efflux pump MepA, Nucleic Acids Res, vol.37, pp.1211-1224, 2009.

F. Lebreton, W. Van-schaik, A. M. Mcguire, P. Godfrey, A. Griggs et al., Emergence of epidemic multidrug-resistant Enterococcus faecium from animal and commensal strains, 2013.

H. Lellek, G. C. Franke, C. Ruckert, M. Wolters, C. Wolschke et al., Emergence of daptomycin non-susceptibility in colonizing vancomycin-resistant Enterococcus faecium isolates during daptomycin therapy, Int. J. Med. Microbiol, vol.305, pp.902-909, 2015.

C. H. Lester, D. Sandvang, S. S. Olsen, H. C. Schonheyder, J. O. Jarlov et al., Emergence of ampicillin-resistant Enterococcus faecium in Danish hospitals, J. Antimicrob. Chemother, vol.62, pp.1203-1206, 2008.

J. D. Lewis, K. B. Enfield, H. L. Cox, A. J. Mathers, and C. D. Sifri, A single-center experience with infections due to daptomycin-nonsusceptible Enterococcus faecium in liver transplant recipients, Transpl. Infect. Dis, vol.18, pp.341-353, 2016.

D. Li, Y. Wang, S. Schwarz, J. Cai, R. Fan et al., Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri, J. Antimicrob. Chemother, vol.71, pp.1474-1478, 2016.

M. Linkevicius, L. Sandegren, and D. I. Andersson, Potential of tetracycline resistance proteins to evolve tigecycline resistance, Antimicrob. Agents Chemother, vol.60, pp.789-796, 2016.

Y. Liu, Y. Wang, C. Wu, Z. Shen, S. Schwarz et al., First report of the multidrug resistance gene cfr in Enterococcus faecalis of animal origin, Antimicrob. Agents Chemother, vol.56, pp.1650-1654, 2012.

Y. Liu, Y. Wang, S. Schwarz, Y. Li, Z. Shen et al., Transferable multiresistance plasmids carrying cfr in Enterococcus spp. from swine and farm environment, Antimicrob. Agents Chemother, vol.57, pp.42-48, 2013.

Y. Liu, Y. Wang, L. Dai, C. Wu, and J. Shen, First report of multiresistance gene cfr in Enterococcus species casseliflavus and gallinarum of swine origin, Vet. Microbiol, vol.170, pp.352-357, 2014.

Y. Liu, Y. Wang, S. Schwarz, S. Wang, L. Chen et al., Investigation of a multiresistance gene cfr that fails to mediate resistance to phenicols and oxazolidinones in Enterococcus faecalis, J. Antimicrob. Chemother, vol.69, pp.892-898, 2014.

J. B. Locke, G. E. Zurenko, K. J. Shaw, and K. Bartizal, Tedizolid for the management of human infections: in vitro characteristics, Clin. Infect. Dis, vol.58, pp.35-42, 2014.

K. Loens, S. Verkroost, M. Ieven, and H. Goossens, First 2 cases of vancomycin variable enterococcus faeciumin Belgium. 26th European Congress of Clinical Microbiology and Infectious Diseases, 2016.

K. S. Long, J. Poehlsgaard, C. Kehrenberg, S. Schwarz, and B. Vester, The Cfr rRNA methyltransferase confers resistance to Phenicols, Lincosamides, Oxazolidinones, Pleuromutilins, and Streptogramin A antibiotics, Antimicrob. Agents Chemother, vol.50, pp.2500-2505, 2006.

A. Lupien, H. Gingras, P. Leprohon, and M. Ouellette, Induced tigecycline resistance in Streptococcus pneumoniae mutants reveals mutations in ribosomal proteins and rRNA, J. Antimicrob. Chemother, vol.70, pp.2973-2980, 2015.

F. Marco and M. J. Dowzicky, Antimicrobial susceptibility among important pathogens collected as part of the Tigecycline Evaluation and Surveillance Trial, J. Glob. Antimicrob. Resist, vol.6, pp.50-56, 2004.

S. H. Marshall, C. J. Donskey, R. Hutton-thomas, R. A. Salata, and L. B. Rice, Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis, Antimicrob. Agents Chemother, vol.46, pp.3334-3336, 2002.

T. Matono, K. Hayakawa, R. Hirai, A. Tanimura, K. Yamamoto et al., Emergence of a daptomycin-non-susceptible Enterococcus faecium strain that encodes mutations in DNA repair genes after high-dose daptomycin therapy, BMC Res. Notes, vol.9, 0197.

F. Mcaleese, P. Petersen, A. Ruzin, P. M. Dunman, E. Murphy et al., A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline, Antimicrob. Agents Chemother, vol.49, pp.1865-1871, 2005.

R. E. Mendes, L. M. Deshpande, and R. N. Jones, Linezolid update: stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms, Drug Resist. Updat, vol.17, pp.1-12, 2014.

R. E. Mendes, M. Castanheira, D. J. Farrell, R. K. Flamm, H. S. Sader et al., Longitudinal (2001-14) analysis of enterococci and VRE causing invasive infections in European and US hospitals, including a contemporary (2010-13) analysis of oritavancin in vitro potency, J. Antimicrob. Chemother, vol.71, pp.3453-3458, 2016.

R. E. Mendes, L. M. Deshpande, M. Castanheira, and R. K. Flamm, Evolving linezolid resistance mechanisms in a worldwide collection of enterococcal clinical isolates: results from the SENTRY antimicrobial surveillance program, 2016.

R. E. Mendes, P. A. Hogan, R. N. Jones, H. S. Sader, and R. K. Flamm, Surveillance for linezolid resistance via the Zyvox(R) Annual Appraisal of Potency and Spectrum (ZAAPS) programme (2014): evolving resistance mechanisms with stable susceptibility rates, J. Antimicrob. Chemother, vol.71, pp.1860-1865, 2016.

C. Miller, J. Kong, T. T. Tran, C. A. Arias, G. Saxer et al., Adaptation of Enterococcus faecalis to daptomycin reveals an ordered progression to resistance, Antimicrob. Agents Chemother, vol.57, pp.5373-5383, 2013.
DOI : 10.1128/aac.02297-13

URL : https://aac.asm.org/content/58/1/631.full.pdf

W. R. Miller, J. M. Munita, and C. A. Arias, Mechanisms of antibiotic resistance in enterococci, Expert Rev. Anti. Ther, vol.12, pp.1221-1236, 2014.
DOI : 10.1586/14787210.2014.956092

URL : http://europepmc.org/articles/pmc4433168?pdf=render

W. R. Miller, A. S. Bayer, and C. A. Arias, Mechanism of action and resistance to daptomycin in Staphylococcus aureus and enterococci. Cold Spring Harb, Perspect. Med, vol.6, 2016.

N. N. Mishra, A. S. Bayer, T. T. Tran, Y. Shamoo, E. Mileykovskaya et al., Daptomycin resistance in enterococci is associated with distinct alterations of cell membrane phospholipid content, PLoS One, vol.7, p.43958, 2012.

C. I. Montero, F. Stock, and P. R. Murray, Mechanisms of resistance to daptomycin in Enterococcus faecium, Antimicrob. Agents Chemother, vol.52, pp.1167-1170, 2008.

I. F. Moore, D. W. Hughes, and G. D. Wright, Tigecycline is modified by the flavindependent monooxygenase TetX, Biochemistry, vol.44, pp.11829-11835, 2005.
DOI : 10.1021/bi0506066

J. M. Munita, T. T. Tran, L. Diaz, D. Panesso, J. Reyes et al., A liaF codon deletion abolishes daptomycin bactericidal activity against vancomycinresistant Enterococcus faecalis, Antimicrob. Agents Chemother, vol.57, pp.2831-2833, 2013.
DOI : 10.1128/aac.00021-13

URL : https://aac.asm.org/content/57/6/2831.full.pdf

J. K. Muraih, A. Pearson, J. Silverman, and M. Palmer, Oligomerization of daptomycin on membranes, Biochim. Biophys. Acta, vol.1808, pp.1154-1160, 2011.
DOI : 10.1016/j.bbamem.2011.01.001

URL : https://doi.org/10.1016/j.bbamem.2011.01.001

J. K. Bender, Drug Resistance Updates, vol.40, pp.25-39, 2018.

J. K. Muraih, J. Harris, S. D. Taylor, and M. Palmer, Characterization of daptomycin oligomerization with perylene excimer fluorescence: stoichiometric binding of phosphatidylglycerol triggers oligomer formation, Biochim. Biophys. Acta, vol.1818, pp.673-678, 2012.

B. E. Murray, The life and times of the Enterococcus, Clin. Microbiol. Rev, vol.3, pp.46-65, 1990.

A. Muthaiyan, J. A. Silverman, R. K. Jayaswal, and B. J. Wilkinson, Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization, Antimicrob. Agents Chemother, vol.52, pp.980-990, 2008.

A. H. Mutnick, V. Enne, and R. N. Jones, Linezolid resistance since 2001: SENTRY antimicrobial surveillance program, Ann. Pharmacother, vol.37, pp.769-774, 2003.

N. T. Mutters, G. Werner, E. Tacconelli, and A. Mischnik, Treatment options for serious infections caused by vancomycin-resistant enterococci, Dtsch. Med. Wochenschr, vol.140, pp.42-45, 2015.

N. Navarro-gonzalez, E. Casas-diaz, C. M. Porrero, A. Mateos, L. Dominguez et al., Food-borne zoonotic pathogens and antimicrobial resistance of indicator bacteria in urban wild boars in, Vet. Microbiol, vol.167, pp.686-689, 2013.

M. Niebel, J. Quick, A. M. Prieto, R. L. Hill, R. Pike et al., Deletions in a ribosomal protein-coding gene are associated with tigecycline resistance in Enterococcus faecium, Int. J. Antimicrob. Agents, vol.46, pp.572-575, 2015.

E. Ntokou, C. Stathopoulos, I. Kristo, E. Dimitroulia, M. Labrou et al., Intensive care unit dissemination of multiple clones of linezolid-resistant Enterococcus faecalis and Enterococcus faecium, J. Antimicrob. Chemother, vol.67, pp.1819-1823, 2012.

E. Numminen, M. Gutmann, M. Shubin, P. Marttinen, G. Meric et al., The impact of host metapopulation structure on the population genetics of colonizing bacteria, J. Theor. Biol, vol.396, pp.53-62, 2016.

C. O'driscoll, V. Murphy, O. Doyle, C. Wrenn, A. Flynn et al., First outbreak of linezolid-resistant vancomycinresistant Enterococcus faecium in an Irish hospital, J. Hosp. Infect, vol.91, pp.367-370, 2014.

M. W. Olson, A. Ruzin, E. Feyfant, T. S. Rush-3rd, J. O'connell et al., Functional, biophysical, and structural bases for antibacterial activity of tigecycline, Antimicrob. Agents Chemother, vol.50, pp.2156-2166, 2006.

K. L. Palmer, A. Daniel, C. Hardy, J. Silverman, and M. S. Gilmore, Genetic basis for daptomycin resistance in enterococci, Antimicrob. Agents Chemother, vol.55, pp.3345-3356, 2011.

D. Panesso, J. Reyes, E. P. Gaston, M. Deal, A. Londono et al., Deletion of liaR reverses daptomycin resistance in Enterococcus faecium independent of the genetic background, Antimicrob. Agents Chemother, vol.59, pp.7327-7334, 2015.

G. A. Pankey, Tigecycline. J. Antimicrob. Chemother, vol.56, pp.470-480, 2005.

S. N. Patel, N. Memari, D. Shahinas, B. Toye, F. B. Jamieson et al., Linezolid resistance in Enterococcus faecium isolated in Ontario, Canada. Diagn. Microbiol. Infect. Dis, vol.77, pp.350-353, 2013.

J. M. Pericas, C. Garcia-de-la-maria, M. Brunet, Y. Armero, J. Garcia-gonzalez et al., Early in vitro development of daptomycin non-susceptibility in high-level aminoglycoside-resistant Enterococcus faecalis predicts the efficacy of the combination of high-dose daptomycin plus ampicillin in an in vivo model of experimental endocarditis, J. Antimicrob. Chemother, vol.72, pp.1714-1722, 2017.

M. A. Pfaller, R. E. Mendes, J. M. Streit, P. A. Hogan, and R. K. Flamm, Five-Year Summary of In Vitro Activity and Resistance Mechanisms of Linezolid against Clinically Important Gram-Positive Cocci in the United States from the LEADER Surveillance Program, Antimicrob. Agents Chemother, p.61, 2011.

M. A. Pfaller, R. E. Mendes, J. M. Streit, P. A. Hogan, and R. K. Flamm, ZAAPS Program results for 2015: an activity and spectrum analysis of linezolid using clinical isolates from medical centres in 32 countries, J. Antimicrob. Chemother, vol.72, pp.3093-3099, 2017.

M. Pioletti, F. Schlunzen, J. Harms, R. Zarivach, M. Gluhmann et al., Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3, EMBO J, vol.20, pp.1829-1839, 2001.

G. L. Plosker and D. P. Figgitt, Linezolid: a pharmacoeconomic review of its use in serious Gram-positive infections, Pharmacoeconomics, vol.23, pp.945-964, 2005.

J. Pogliano, N. Pogliano, and J. A. Silverman, Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins, J. Bacteriol, vol.194, pp.4494-4504, 2012.

R. A. Power, J. Parkhill, and . De-oliveira, Microbial genome-wide association studies: lessons from human GWAS, Nat. Rev. Genet, vol.18, pp.41-50, 2017.

S. Rahim, S. K. Pillai, H. S. Gold, L. Venkataraman, K. Inglima et al., Linezolid-resistant, vancomycin-resistant Enterococcus faecium infection in patients without prior exposure to linezolid, Clin. Infect. Dis, vol.36, pp.146-148, 2003.

B. A. Rasmussen, Y. Gluzman, and F. P. Tally, Inhibition of protein synthesis occurring on tetracycline-resistant, TetM-protected ribosomes by a novel class of tetracyclines, the glycylcyclines, Antimicrob. Agents Chemother, vol.38, pp.1658-1660, 1994.

K. E. Raven, S. Reuter, R. Reynolds, H. J. Brodrick, J. E. Russell et al., A decade of genomic history for healthcare-associated Enterococcus faecium in the United Kingdom and Ireland, Genome Res, vol.26, pp.1388-1396, 2016.

J. Reyes, D. Panesso, T. T. Tran, N. N. Mishra, M. R. Cruz et al., A liaR deletion restores susceptibility to daptomycin and antimicrobial peptides in multidrug-resistant Enterococcus faecalis, J. Infect. Dis, vol.211, pp.1317-1325, 2015.

H. S. Sader, D. J. Farrell, R. K. Flamm, and R. N. Jones, Daptomycin activity tested against 164457 bacterial isolates from hospitalised patients: summary of 8 years of a Worldwide Surveillance Programme, Int. J. Antimicrob. Agents, vol.43, pp.465-469, 2005.

H. S. Sader, D. J. Farrell, R. K. Flamm, and R. N. Jones, Variation in potency and spectrum of tigecycline activity against bacterial strains from U.S. Medical centers since its approval for clinical use, Antimicrob. Agents Chemother, vol.58, pp.2274-2280, 2006.

H. S. Sader, D. J. Farrell, R. K. Flamm, and R. N. Jones, Analysis of 5-year trends in daptomycin activity tested against Staphylococcus aureus and enterococci from European and US hospitals, J. Glob. Antimicrob. Resist, vol.3, pp.161-165, 2009.

A. M. Sanchez-diaz, C. Cuartero, S. Lozano, J. D. Rodriguez, J. M. Alonso et al., Emergence and longlasting persistence of linezolid-resistant Enterococcus faecium-ST117 in an oncohematologic patient after a nine-day course of linezolid, Microb. Drug Resist, vol.20, pp.17-21, 2014.

J. C. Sanchez-gomez, F. Fraile-malmierca, E. D. Valverde-romero, M. Sanchez, J. A. Garciarodriguez et al., Linezolid-resistant Enterococcus faecalis: first report in Spain, J. Chemother, vol.18, pp.440-442, 2006.

N. Sandoval, S. Grau, L. Sorli, M. Montero, E. Esteve et al., Clinical experience with the use of daptomycin in a tertiary care teaching hospital in, Future Microbiol, vol.10, pp.1145-1154, 2015.

A. F. Santos-arronches, Pesquisa de resistência a antibióticos em alguns enterococos intestinais provenientes de diferentes amostras de águas, Biologica. Tecnica Lisboa, p.87, 2014.

M. H. Scheetz, S. A. Knechtel, M. Malczynski, M. J. Postelnick, and C. Qi, Increasing incidence of linezolid-intermediate or-resistant, vancomycin-resistant Enterococcus faecium strains parallels increasing linezolid consumption, Antimicrob. Agents Chemother, vol.52, pp.2256-2259, 2008.

S. Schwarz, C. Werckenthin, and C. Kehrenberg, Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri, Antimicrob. Agents Chemother, vol.44, pp.2530-2533, 2000.

W. R. Scott, S. B. Baek, D. Jung, R. E. Hancock, and S. K. Straus, NMR structural studies of the antibiotic lipopeptide daptomycin in DHPC micelles, Biochim. Biophys. Acta, vol.1768, pp.3116-3126, 2007.

J. Seedat, G. Zick, I. Klare, C. Konstabel, N. Weiler et al., Rapid emergence of resistance to linezolid during linezolid therapy of an Enterococcus faecium infection, Antimicrob. Agents Chemother, vol.50, pp.4217-4219, 2006.

H. Seifert and M. J. Dowzicky, A longitudinal analysis of antimicrobial susceptibility in clinical institutions in Germany as part of the Tigecycline Evaluation and Surveillance Trial, Chemotherapy, vol.55, pp.241-252, 2004.

L. K. Sharkey and A. J. O'neill, Antibiotic resistance ABC-F proteins: bringing target protection into the limelight, ACS Infect. Dis, vol.4, pp.239-246, 2018.

J. Shen, Y. Wang, and S. Schwarz, Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria, J. Antimicrob. Chemother, vol.68, pp.1697-1706, 2013.

B. S. Shukla, S. Shelburne, K. Reyes, M. Kamboj, J. D. Lewis et al., Influence of Minimum Inhibitory Concentration in Clinical Outcomes of Enterococcus faecium Bacteremia Treated With Daptomycin: Is it Time to Change the Breakpoint?, Clin. Infect. Dis, vol.62, pp.1514-1520, 2016.

J. A. Silverman, N. G. Perlmutter, and H. M. Shapiro, Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus, Antimicrob. Agents Chemother, vol.47, pp.2538-2544, 2003.

P. J. Simner, H. Adam, M. Baxter, M. Mccracken, G. Golding et al., Epidemiology of vancomycin-resistant enterococci in Canadian hospitals (CANWARD study, Antimicrob. Agents Chemother, vol.59, pp.4315-4317, 2007.

C. Sinel, T. Cosquer, M. Auzou, D. Goux, J. C. Giard et al., Sequential steps of daptomycin resistance in Enterococcus faecium and reversion to hypersusceptibility through IS-mediated inactivation of the liaFSR operon, J. Antimicrob. Chemother, vol.71, pp.2793-2797, 2016.

C. Sinel, C. Jaussaud, M. Auzou, J. C. Giard, and V. Cattoir, Mutant prevention concentrations of daptomycin for Enterococcus faecium clinical isolates, Int. J. Antimicrob. Agents, vol.48, pp.449-452, 2016.

A. Sivertsen, T. Pedersen, K. W. Larssen, K. Bergh, T. G. Ronning et al., A silenced vanA gene cluster on a transferable plasmid caused an outbreak of vancomycin-variable enterococci, Antimicrob. Agents Chemother, vol.60, pp.4119-4127, 2016.

A. Sivertsen, J. Janice, I. Sjögren, and K. Hegstad, Vancomycin variable resistance may occur through creation of a novel promoter after deletions by polymerase slippage, 2017.

A. Sorlozano, D. Panesso, J. M. Navarro-mari, C. A. Arias, and J. Gutierrez-fernandez, Characterization of daptomycin non-susceptible Enterococcus faecium producing urinary tract infection in a renal transplant recipient, Rev. Esp. Quimioter, vol.28, pp.207-209, 2015.

M. Souli, V. Sakka, I. Galani, A. Antoniadou, L. Galani et al., Colonisation with vancomycin-and linezolidresistant Enterococcus faecium in a university hospital: molecular epidemiology and risk factor analysis, Int. J. Antimicrob. Agents, vol.33, pp.137-142, 2009.

M. E. Steed, C. Vidaillac, W. E. Rose, P. Winterfield, G. W. Kaatz et al., Characterizing vancomycin-resistant Enterococcus strains with various mechanisms of daptomycin resistance developed in an in vitro pharmacokinetic/pharmacodynamic model, Antimicrob. Agents Chemother, vol.55, pp.4748-4754, 2011.

J. K. Bender, Drug Resistance Updates, vol.40, pp.25-39, 2018.

S. Stefani and M. J. Dowzicky, Assessment of the Activity of Tigecycline against GramPositive and Gram-Negative Organisms collected from Italy between 2012 and 2014, as Part of the Tigecycline Evaluation and Surveillance Trial, T.E.S.T.). Pharmaceuticals Basel, p.9, 2016.

G. E. Stein and T. Babinchak, Tigecycline: an update, Diagn. Microbiol. Infect. Dis, vol.75, pp.331-336, 2013.
DOI : 10.1016/j.diagmicrobio.2012.12.004

J. M. Streit, R. K. Flamm, J. E. Ross, R. E. Mendes, R. N. Jones et al., Report of Linezolid Activity From the Linezolid Experience and Accurate Determination of Resistance (LEADER) Program for 2014: Monitoring Trends and Mechanisms, 2015.

Y. Sun, Y. Cai, X. Liu, N. Bai, B. Liang et al., The emergence of clinical resistance to tigecycline, Int. J. Antimicrob. Agents, vol.41, pp.110-116, 2013.

S. M. Swaney, H. Aoki, M. C. Ganoza, and D. L. Shinabarger, The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria, Antimicrob. Agents Chemother, vol.42, pp.3251-3255, 1998.

T. A. Szakacs, L. Kalan, M. J. Mcconnell, A. Eshaghi, D. Shahinas et al., Outbreak of vancomycin-susceptible Enterococcus faecium containing the wild-type vanA gene, J. Clin. Microbiol, vol.52, pp.1682-1686, 2014.

M. D. Tamang, D. C. Moon, S. R. Kim, H. Y. Kang, K. Lee et al., Detection of novel oxazolidinone and phenicol resistance gene optrA in enterococcal isolates from food animals and animal carcasses, Vet. Microbiol, vol.201, pp.252-256, 2017.

R. Taylor, K. Butt, B. Scott, T. Zhang, J. K. Muraih et al., Two successive calcium-dependent transitions mediate membrane binding and oligomerization of daptomycin and the related antibiotic A54145, Biochim. Biophys. Acta, vol.1858, 1999.

A. P. Tedim, P. Ruiz-garbajosa, J. Corander, C. M. Rodriguez, R. Canton et al., Population biology of intestinal enterococcus isolates from hospitalized and nonhospitalized individuals in different age groups, Appl. Environ. Microbiol, vol.81, pp.1820-1831, 2015.

A. P. Tedim, P. Ruiz-garbajosa, M. C. Rodriguez, M. Rodriguez-banos, V. F. Lanza et al., Long-term clonal dynamics of Enterococcus faecium strains causing bloodstream infections (1995-2015) in Spain, J. Antimicrob. Chemother, vol.72, pp.48-55, 2017.

M. Thaker, P. Spanogiannopoulos, and G. D. Wright, The tetracycline resistome, Cell. Mol. Life Sci, vol.67, pp.419-431, 2010.

M. N. Thaker, L. Kalan, N. Waglechner, A. Eshaghi, S. N. Patel et al., Vancomycin-variable enterococci can give rise to constitutive resistance during antibiotic therapy, Antimicrob. Agents Chemother, vol.59, pp.1405-1410, 2015.

C. M. Thilesen, O. Bjorang, T. Skrede, T. Aronsen, B. Aasnaes et al., Emergence of mutation-based linezolid-resistant invasive Enterococcus faecalis in a haemodialysis patient in Norway, APMIS, vol.122, pp.83-84, 2014.

Y. Tian, T. Li, Y. Zhu, B. Wang, X. Zou et al., Mechanisms of linezolid resistance in staphylococci and enterococci isolated from two teaching hospitals in, BMC Microbiol, vol.14, p.292, 2014.

J. Top, R. Willems, H. Blok, M. De-regt, K. Jalink et al., Ecological replacement of Enterococcus faecalis by multiresistant clonal complex 17 Enterococcus faecium, Clin. Microbiol. Infect, vol.13, pp.316-319, 2007.
DOI : 10.1111/j.1469-0691.2006.01631.x

URL : https://doi.org/10.1111/j.1469-0691.2006.01631.x

T. T. Tran, D. Panesso, H. Gao, J. H. Roh, J. M. Munita et al., Whole-genome analysis of a daptomycin-susceptible enterococcus faecium strain and its daptomycin-resistant variant arising during therapy, Antimicrob. Agents Chemother, vol.57, pp.261-268, 2013.

T. T. Tran, D. Panesso, N. N. Mishra, E. Mileykovskaya, Z. Guan et al., Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids, 2013.

T. T. Tran, J. M. Munita, and C. A. Arias, Mechanisms of drug resistance: daptomycin resistance, Ann. N. Y. Acad. Sci, vol.1354, pp.32-53, 2015.

A. H. Uttley, R. C. George, J. Naidoo, N. Woodford, A. P. Johnson et al., High-level vancomycinresistant enterococci causing hospital infections, Epidemiol. Infect, vol.103, pp.173-181, 1989.

S. Vega and M. J. Dowzicky, Antimicrobial susceptibility among Gram-positive and Gram-negative organisms collected from the Latin American region between 2004 and 2015 as part of the Tigecycline Evaluation and Surveillance Trial, Ann. Clin. Microbiol. Antimicrob, vol.16, p.50, 2017.

L. Villa, C. Feudi, D. Fortini, A. Garcia-fernandez, and A. Carattoli, Genomics of KPC-producing Klebsiella pneumoniae sequence type 512 clone highlights the role of RamR and ribosomal S10 protein mutations in conferring tigecycline resistance, Antimicrob. Agents Chemother, vol.58, pp.1707-1712, 2014.

M. A. Visalli, E. Murphy, S. J. Projan, and P. A. Bradford, AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis, Antimicrob. Agents Chemother, vol.47, pp.665-669, 2003.

V. Vorobieva, L. Roer, U. S. Justesen, F. Hansen, N. Frimodt-moller et al., Detection of the optrA gene in a clinical ST16 Enterococcus faecalis isolate in Denmark, J. Glob. Antimicrob. Resist, vol.10, pp.12-13, 2017.

G. Wang, S. Kamalakaran, A. Dhand, W. Huang, C. Ojaimi et al., Identification of a novel clone, ST736, among Enterococcus faecium clinical isolates and its association with daptomycin nonsusceptibility, Antimicrob. Agents Chemother, vol.58, pp.4848-4854, 2014.

Y. Wang, Y. Lv, J. Cai, S. Schwarz, L. Cui et al., A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin, J. Antimicrob. Chemother, vol.70, pp.2182-2190, 2015.

X. Wang, M. Davlieva, J. Reyes, D. Panesso, C. A. Arias et al., A novel phosphodiesterase of the GdpP family modulates cyclic di-AMP levels in response to cell membrane stress in daptomycin-resistant enterococci, Antimicrob. Agents Chemother, 2017.

M. Weisser, E. A. Oostdijk, R. J. Willems, M. J. Bonten, R. Frei et al., Dynamics of ampicillin-resistant Enterococcus faecium clones colonizing hospitalized patients: data from a prospective observational study, BMC Infect. Dis, vol.12, p.68, 2012.

M. Weisser, C. Theilacker, . Tschudin, S. Sutter, R. Babikir et al., Hospital Infection Surveillance System for Patients With Haematologic/Oncologic Malignancies Study, 2017. Secular trends of bloodstream infections during neutropenia in 15 181 haematopoietic stem cell transplants: 13-year results from a European multicentre surveillance study (ONKOKISS), Clin. Microbiol. Infect, vol.23, pp.854-859

G. Werner, T. M. Coque, A. M. Hammerum, R. Hope, W. Hryniewicz et al., Emergence and spread of vancomycin resistance among enterococci in Europe, Euro Surveill, vol.13, 2008.

G. Werner, S. Gfrorer, C. Fleige, W. Witte, and I. Klare, Tigecycline-resistant Enterococcus faecalis strain isolated from a German intensive care unit patient, J. Antimicrob. Chemother, vol.61, pp.1182-1183, 2008.

G. Werner, T. M. Coque, C. M. Franz, E. Grohmann, K. Hegstad et al., Antibiotic resistant enterococci-tales of a drug resistance gene trafficker, Int. J. Med. Microbiol, vol.303, pp.360-379, 2013.

B. J. Werth, M. E. Steed, C. E. Ireland, T. T. Tran, P. Nonejuie et al., Defining daptomycin resistance prevention exposures in vancomycin-resistant Enterococcus faecium and E. Faecalis, Antimicrob. Agents Chemother, vol.58, pp.5253-5261, 2014.

D. W. Whang, L. G. Miller, N. M. Partain, and J. A. Mckinnell, Systematic review and meta-analysis of linezolid and daptomycin for treatment of vancomycin-resistant enterococcal bloodstream infections, Antimicrob. Agents Chemother, vol.57, pp.5013-5018, 2013.

R. J. Willems, J. Top, W. Van-schaik, H. Leavis, M. Bonten et al., Restricted gene flow among hospital subpopulations of Enterococcus faecium, MBio, vol.3, pp.151-00112, 2012.

D. N. Wilson, Ribosome-targeting antibiotics and mechanisms of bacterial resistance, Nat. Rev. Microbiol, vol.12, pp.35-48, 2014.

D. N. Wilson, F. Schluenzen, J. M. Harms, A. L. Starosta, S. R. Connell et al., The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning, Proc Natl Acad Sci U S A, vol.105, pp.13339-13344, 2008.

T. Zhang, J. K. Muraih, E. Mintzer, N. Tishbi, C. Desert et al., Mutual inhibition through hybrid oligomer formation of daptomycin and the semisynthetic lipopeptide antibiotic CB-182,462, Biochim. Biophys. Acta, vol.1828, pp.302-308, 2013.
DOI : 10.1016/j.bbamem.2012.10.008

URL : https://doi.org/10.1016/j.bbamem.2012.10.008

T. Zhang, J. K. Muraih, B. Maccormick, J. Silverman, and M. Palmer, Daptomycin forms cation-and size-selective pores in model membranes, Biochim. Biophys. Acta, vol.1838, pp.2425-2430, 2014.
DOI : 10.1016/j.bbamem.2014.05.014

URL : https://doi.org/10.1016/j.bbamem.2014.05.014

T. Zhang, J. K. Muraih, N. Tishbi, J. Herskowitz, R. L. Victor et al., Cardiolipin prevents membrane translocation and permeabilization by daptomycin, J. Biol. Chem, vol.289, pp.11584-11591, 2014.
DOI : 10.1074/jbc.m114.554444

URL : http://www.jbc.org/content/289/17/11584.full.pdf

Y. Zhang, M. Du, Y. Chang, L. A. Chen, and Q. Zhang, Incidence, clinical characteristics, and outcomes of nosocomial Enterococcus spp. bloodstream infections in a tertiary-care hospital in Beijing, China: a four-year retrospective study, Antimicrob. Resist. Infect. Control, vol.6, p.73, 2017.

M. Zhao, L. Liang, L. Ji, D. Chen, Y. Zhang et al., Similar efficacy and safety of daptomycin versus linezolid for treatment of vancomycin-resistant enterococcal bloodstream infections: a meta-analysis, Int. J. Antimicrob. Agents, vol.48, pp.231-238, 2016.

J. K. Bender, Drug Resistance Updates, vol.40, pp.25-39, 2018.