K. Yanagitani, Y. Imagawa, T. Iwawaki, A. Hosoda, M. Saito et al., Cotranslational Targeting of XBP1 protein to the membrane promotes cytoplasmic splicing of its own mRNA, Mol Cell, vol.34, pp.191-200, 2009.

K. Yanagitani, Y. Kimata, H. Kadokura, and K. Kohno, Translational pausing ensures membrane targeting and cytoplasmic splicing of XBP1u mRNA, Science, vol.331, pp.586-589, 2011.

S. Kanda, K. Yanagitani, Y. Yokota, Y. Esaki, and K. Kohno, Autonomous translational pausing is required for XBP1u mRNA recruitment to the ER via the SRP pathway, Proc Natl Acad Sci, vol.113, pp.5886-5895, 2016.

F. Chalmers, B. Sweeney, K. Cain, and N. J. Bulleid, Inhibition of IRE1a-mediated XBP1 mRNA cleavage by XBP1 reveals a novel regulatory process during the unfolded protein response, Wellcome Open Res, vol.2, p.36, 2017.

Y. He, S. Sun, H. Sha, Z. Liu, L. Yang et al., Emerging roles for XBP1, a sUPeR transcription factor, Gene Expr, vol.15, pp.13-25, 2010.

K. J. Travers, C. K. Patil, L. Wodicka, D. J. Lockhart, J. Weissman et al., Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ERassociated degradation, Cell, vol.101, pp.249-258, 2000.

N. N. Iwakoshi, A. Lee, and L. H. Glimcher, The X-box binding protein-1 transcription factor is required for plasma cell differentiation and the unfolded protein response, Immunol Rev, vol.194, pp.29-38, 2003.

R. Sriburi, S. Jackowski, K. Mori, and J. W. Brewer, XBP1: a link between the unfolded protein response, lipid biosynthesis, and biogenesis of the endoplasmic reticulum, J Cell Biol, vol.167, pp.35-41, 2004.

H. M. Korchak, Regulation of hepatic lipogenesis, Tufts Folia Med, vol.8, pp.134-143, 2008.

J. S. So, K. Y. Hur, M. Tarrio, V. Ruda, M. Frankkamenetsky et al., Silencing of lipid metabolism genes through IRE1a-mediated mRNA decay lowers plasma lipids in mice, Cell Metab, vol.16, pp.487-499, 2012.

Y. Zhou, J. Lee, C. M. Reno, C. Sun, S. W. Park et al., Regulation of glucose homeostasis through a XBP-1-FoxO1 interaction, Nat Med, vol.17, pp.356-365, 2011.

S. W. Park, H. Herrema, M. Salazar, I. Cakir, S. Cabi et al., BRD7 regulates XBP1s' activity and glucose homeostasis through its interaction with the regulatory subunits of PI3K, Cell Metab, vol.20, pp.73-84, 2014.

J. Liu, D. Ibi, K. Taniguchi, J. Lee, H. Herrema et al., Inflammation improves glucose homeostasis through IKKb-XBP1s interaction, Cell, vol.167, pp.1052-1066, 2016.

J. Lee, C. Sun, Y. Zhou, J. Lee, D. Gokalp et al., MAPKmediated regulation of Xbp1s is crucial for glucose homeostasis, Nat Med, vol.17, pp.1251-1260, 2011.

D. Yingfeng, W. V. Zhao, C. T. Ningguo, G. William, H. L. Anwarul et al., The Xbp1s/GalE axis links ER stress to postprandial hepatic metabolism, J Clin Invest, vol.123, pp.455-468, 2013.

U. Ozcan, Q. Cao, E. Yilmaz, A. Lee, N. N. Iwakoshi et al., Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes, Science, vol.306, pp.457-461, 2004.

M. Akiyama, C. W. Liew, S. Lu, J. Hu, R. Martinez et al., Xbox binding protein 1 is essential for insulin regulation of pancreatic a-cell function, Diabetes, vol.62, pp.2439-2449, 2013.

Y. Liu, M. Adachi, S. Zhao, M. Hareyama, A. C. Koong et al., Preventing oxidative stress a new role for XBP1, Cell, vol.16, pp.847-857, 2010.

R. Tao, H. Chen, C. Gao, P. Xue, F. Yang et al., Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast, Cell Res, vol.21, pp.1619-1633, 2011.

J. Wu and R. J. Kaufman, From acute ER stress to physiological roles of the Unfolded Protein Response, Cell Death Differ, vol.13, pp.374-384, 2006.

A. Blais, M. Tsikitis, D. Acosta-alvear, S. R. Kluger, Y. Dynlacht et al., An initial blueprint for myogenic differentiation, Genes Dev, vol.19, pp.553-569, 2005.

A. M. Reimold, N. N. Iwakoshi, J. Manis, P. Vallabhajosyula, E. Szomolanyi-tsuda et al., Plasma cell differentiation requires the transcription factor XBP-1, Nature, vol.412, pp.300-307, 2001.

A. Lee, G. C. Chu, N. N. Iwakoshi, and L. H. Glimcher, XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands, EMBO J, vol.24, pp.4368-4380, 2005.

W. J. Huh, E. Esen, J. H. Geahlen, A. J. Bredemeyer, A. Lee et al., XBP1 controls maturation of gastric zymogenic cells by induction of MIST1 and expansion of the rough endoplasmic reticulum, Gastroenterology, vol.139, pp.2038-2049, 2010.

H. Sha, Y. He, H. Chen, C. Wang, A. Zenno et al., The IRE1a-XBP1 pathway of the unfolded protein response is required for adipogenesis, Cell Metab, vol.9, pp.556-564, 2009.

T. Masaki, M. Yoshida, and S. Noguchi, Targeted disruption of CRE-Binding factor TREB5 gene leads 267, 1999.

, The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. to cellular necrosis in cardiac myocytes at the embryonic stage, Biochem Biophys Res Commun, vol.286, pp.350-356, 2018.

A. M. Reimold, A. Etkin, I. Clauss, A. Perkins, D. S. Friend et al., An essential role in liver development for transcription factor XBP-1, Genes Dev, vol.14, pp.152-157, 2000.

M. Sone, X. Zeng, J. Larese, and H. D. Ryoo, A modified UPR stress sensing system reveals a novel tissue distribution of IRE1/XBP1 activity during normal Drosophila development, Cell Stress Chaperones, vol.18, pp.307-319, 2013.

S. J. Ono, H. Liout, R. Davidont, J. L. Strominger, and L. H. Glimchert, Human X-box-binding protein 1 is required for the transcription of a subset of human class II major histocompatibility genes and forms a heterodimer with c-fos, Proc Natl Acad Sci, vol.88, pp.4309-4312, 1991.

L. Ding, J. Yan, J. Zhu, H. Zhong, Q. Lu et al., Ligand-independent activation of estrogen receptor a by XBP-1, Nucleic Acids Res, vol.31, pp.5266-5274, 2003.

T. Ravasi, H. Suzuki, C. V. Cannistraci, S. Katayama, V. B. Bajic et al., An atlas of combinatorial transcriptional regulation in mouse and man, Cell, vol.140, pp.744-752, 2010.

A. W. Reinke, J. Baek, O. Ashenberg, and A. E. Keating, Networks of bZIP protein-protein interactions diversified over a billion years of evolution, Science, vol.340, pp.730-734, 2013.

X. Chen, D. Iliopoulos, Q. Zhang, Q. Tang, M. B. Greenblatt et al., XBP1 promotes triple-negative breast cancer by controlling the HIF1a pathway, Nature, vol.508, pp.103-107, 2014.

J. Hollien, J. H. Lin, H. Li, N. Stevens, P. Walter et al., Regulated Ire1-dependent decay of messenger RNAs in mammalian cells, J Cell Biol, vol.186, pp.323-331, 2009.

M. Maurel, E. Chevet, J. Tavernier, and S. Gerlo, Getting RIDD of RNA: IRE1 in cell fate regulation, Trends Biochem Sci, vol.39, pp.245-254, 2014.

S. Lhomond, A. T. Dejeans, N. Voutetakis, K. Doultsinos, D. Mcmahon et al., Dual IRE1 RNase functions dictate glioblastoma development, EMBO Mol Med, vol.10, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01777737

W. Tirasophon, K. Lee, B. Callaghan, A. Welihinda, and R. J. Kaufman, The endoribonuclease activity of mammalian IRE1 autoregulates its mRNA and is required for the unfolded protein response, Genes Dev, vol.14, pp.2725-2736, 2000.

J. Hollien and J. S. Weissman, Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response, Science, vol.313, pp.104-107, 2006.

D. Han, A. G. Lerner, W. L. Vande, J. Upton, W. Xu et al., IRE1a kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates, Cell, vol.138, pp.562-575, 2009.

P. Kimmig, M. Diaz, J. Zheng, C. C. Williams, A. Lang et al., The unfolded protein response in fission yeast modulates stability of select mRNAs to maintain protein homeostasis, Elife, vol.2012, pp.1-20, 2012.

. Mishiba-k-0049, Y. Nagashima, E. Suzuki, N. Hayashi, Y. Ogata et al., Defects in IRE1 enhance cell death and fail to degrade mRNAs encoding secretory pathway proteins in the Arabidopsis unfolded protein response, Proc Natl Acad Sci, vol.110, pp.5713-5718, 2013.

S. Hayashi, Y. Wakasa, K. Ozawa, and F. Takaiwa, Characterization of IRE1 ribonuclease-mediated mRNA decay in plants using transient expression analyses in rice protoplasts, New Phytol, vol.210, pp.1259-1268, 2016.

D. Oikawa, M. Tokuda, A. Hosoda, and T. Iwawaki, Identification of a consensus element recognized and cleaved by IRE1a, Nucleic Acids Res, vol.38, pp.6265-6273, 2010.

J. Iqbal, K. Dai, T. Seimon, R. Jungreis, M. Oyadomari et al., IRE1b Inhibits chylomicron production by selectively degrading MTP mRNA, Cell Metab, vol.7, pp.445-455, 2008.

Y. Imagawa, A. Hosoda, S. Sasaka, A. Tsuru, and K. Kohno, RNase domains determine the functional difference between IRE1a and IRE1b, FEBS Lett, vol.582, pp.656-660, 2008.

Y. Shi, K. M. Vattem, R. Sood, J. An, J. Liang et al., Identification and characterization of pancreatic eukaryotic initiation factor 2 alphasubunit kinase, PEK, involved in translational control, Mol Cell Biol, vol.18, pp.7499-7509, 1998.

H. P. Harding, Y. Zhang, and D. Ron, Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase, Nature, vol.397, pp.271-274, 1999.

A. Mcquiston and J. A. Diehl, Recent insights into PERK-dependent signaling from the stressed endoplasmic reticulum, 1897.

M. A. Lloyd, J. C. Osborne, B. Safer, G. Powell, and W. C. Merrick, Characteristics of eukaryotic initiation factor 2 and its subunits, J Biol Chem, vol.255, pp.1189-1193, 1980.

H. Ernst, R. F. Duncan, and J. Hershey, Cloning and sequencing of complementary DNAs encoding the, 1987.

, The Authors. The FEBS Journal, vol.286, pp.241-278, 2018.

D. Chen, Z. Fan, M. Rauh, M. Buchfelder, I. Y. Eyupoglu et al., ATF4 promotes angiogenesis and neuronal cell death and confers ferroptosis in a xCT-dependent manner, Oncogene, vol.36, pp.5593-5608, 2017.

Z. Wu, M. Li, W. Zheng, Q. Hu, Z. Cheng et al., Silencing of both ATF4 and PERK inhibits cell cycle progression and promotes the apoptosis of differentiating chondrocytes, Int J Mol Med, vol.40, pp.101-111, 2017.

J. Ishizawa, K. Kojima, D. Chachad, P. Ruvolo, V. Ruvolo et al., ATF4 induction through an atypical integrated stress response to ONC201 triggers p53-independent apoptosis in hematological malignancies, Sci Signal, vol.9, p.17, 2016.

R. Iurlaro, F. Le-on-annicchiarico, C. L. , O. Connor, H. Martin et al., Glucose deprivation induces ATF4-mediated apoptosis through TRAIL death receptors, Mol Cell Biol, vol.37, pp.479-495, 2017.

C. Zhu, F. E. Johansen, and R. Prywes, Interaction of ATF6 and serum response factor, Mol Cell Biol, vol.17, pp.4957-4966, 1997.

K. Yamamoto, T. Sato, T. Matsui, M. Sato, T. Okada et al., Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6alpha and XBP1, Dev Cell, vol.13, pp.365-376, 2007.

R. Asada, S. Kanemoto, S. Kondo, A. Saito, and K. Imaizumi, The signalling from endoplasmic reticulumresident bZIP transcription factors involved in diverse cellular physiology, J Biochem, vol.149, pp.507-518, 2011.

M. Mcmahon, A. Samali, and E. Chevet, Regulation of the unfolded protein response by noncoding RNA, Am J Physiol Cell Physiol, vol.313, pp.243-254, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01586174

C. M. Oslowski and F. Urano, Measuring ER stress and the unfolded protein response using mammalian tissue culture system, Methods Enzymol, vol.490, pp.71-92, 2011.

H. Yoshida, T. Matsui, N. Hosokawa, R. J. Kaufman, K. Nagata et al., A time-dependent phase shift in the mammalian unfolded protein response, Dev Cell, vol.4, pp.265-271, 2003.

R. Sano and J. C. Reed, ER stress-induced cell death mechanisms, Biochim Biophys Acta, vol.1833, pp.3460-3470, 2013.

S. Bartoszewska, K. Kochan, P. Madanecki, A. Piotrowski, R. Ochocka et al., Regulation of the unfolded protein response by microRNAs, Cell Mol Biol Lett, vol.18, pp.555-578, 2013.

I. Wortel, L. T. Van-der-meer, M. Kilberg, and F. N. Van-leeuwen, Surviving stress: modulation of ATF4-mediated stress responses in normal and malignant cells, Trends Endocrinol Metab, vol.28, pp.794-806, 2017.

A. M. Gorman, S. J. Healy, R. Jager, and A. Samali, Stress management at the ER: regulators of ER stressinduced apoptosis, Pharmacol Ther, vol.134, pp.306-316, 2012.

D. Ron and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response, Nat Rev Mol Cell Biol, vol.8, pp.519-529, 2007.

M. Hoyer-hansen and M. Jaattela, Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium, Cell Death Differ, vol.14, pp.1576-1582, 2007.

X. Cheng, H. Liu, C. C. Jiang, L. Fang, C. Chen et al., Connecting endoplasmic reticulum stress to autophagy through IRE1/JNK/ beclin-1 in breast cancer cells, Int J Mol Med, vol.34, pp.772-781, 2014.

C. Giorgi, S. Missiroli, S. Patergnani, J. Duszynski, M. R. Wieckowski et al., Mitochondriaassociated membranes: composition, molecular mechanisms, and physiopathological implications, Antioxid Redox Signal, vol.22, pp.995-1019, 2015.

A. Santel and M. T. Fuller, Control of mitochondrial morphology by a human mitofusin, J Cell Sci, vol.114, pp.867-874, 2001.

J. P. Muñoz, S. Ivanova, J. Wandelmer, M. Inez-crist-obal, P. Noguera et al., Erratum: Mfn2 modulates the UPR and mitochondrial function via repression of PERK, EMBO Journal, vol.32, p.171, 2014.

T. Verfaillie, N. Rubio, A. D. Garg, G. Bultynck, R. Rizzuto et al., PERK is required at the ERmitochondrial contact sites to convey apoptosis after ROS-based ER stress, Cell Death Differ, vol.19, pp.1880-1891, 2012.

T. Mori, T. Hayashi, E. Hayashi, and T. P. Su, Sigma-1 receptor chaperone at the er-mitochondrion interface mediates the mitochondrion-er-nucleus signaling for cellular survival, PLoS ONE, vol.8, p.76941, 2013.

F. Lisbona, D. Rojas-rivera, P. Thielen, S. Zamorano, D. Todd et al., BAX inhibitor-1 is a negative regulator of the ER stress sensor IRE1alpha, Mol Cell, vol.33, pp.679-691, 2009.

K. Vannuvel, R. P. Raes, M. Arnould, and T. , Functional and morphological impact of ER stress on mitochondria, J Cell Physiol, vol.228, pp.1802-1818, 2013.

R. Bravo, J. M. Vicencio, V. Parra, R. Troncoso, J. P. Munoz et al., Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress, J Cell Sci, vol.124, 2011.

S. B. Cullinan and J. A. Diehl, PERK-dependent activation of Nrf2 contributes to redox homeostasis, 2004.

, The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. and cell survival following endoplasmic reticulum stress, The FEBS Journal, vol.286, pp.20108-20117, 2018.

C. Wang, H. Li, Q. Meng, Y. Du, F. Xiao et al., ATF4 deficiency protects hepatocytes from oxidative stress via inhibiting CYP2E1 expression, J Cell Mol Med, vol.18, pp.80-90, 2014.

G. Li, M. Mongillo, K. T. Chin, H. Harding, R. D. Marks et al., Role of ERO1-amediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stressinduced apoptosis, J Cell Biol, vol.186, pp.783-792, 2009.

D. Eletto, E. Chevet, Y. Argon, and C. Appenzeller-herzog, Redox controls UPR to control redox, J Cell Sci, vol.127, pp.3649-3658, 2014.

C. Appenzeller-herzog and M. N. Hall, Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling, Trends Cell Biol, vol.22, pp.274-282, 2012.

F. Patricia, B. Julien, J. L. Patrick, M. Jo?-elle-f,-c-ecile, V. Thomas et al., ) mTOR inhibitors activate PERK signaling and favor viability of gastrointestinal neuroendocrine cell lines, Oncotarget, vol.8, pp.20974-20987, 2017.

C. Tenkerian, J. Krishnamoorthy, Z. Mounir, U. Kazimierczak, A. Khoutorsky et al., ) mTORC2 balances AKT activation and eIF2a serine 51 phosphorylation to promote survival under stress, Mol Cancer Res, vol.13, pp.1377-1388, 2015.

B. Feng, P. M. Yao, Y. Li, C. M. Devlin, D. Zhang et al., The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages, Nat Cell Biol, vol.5, pp.781-792, 2003.

S. Fu, L. Yang, P. Li, O. Hofmann, L. Dicker et al., Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity, Ivanov AR & Hotamisligil GS, vol.473, pp.528-531, 2011.

N. Kaplowitz, T. A. Than, D. Ph, M. Shinohara, and C. Ji, Endoplasmic reticulum stress and liver injury, Semin Liver Dis, vol.27, pp.367-377, 2007.

S. Oyadomari, H. P. Harding, Y. Zhang, M. Oyadomari, and D. Ron, De-phosphorylation of translation initiation factor 2a (eIF2a) enhances glucose tolerance and attenuates hepato-steatosis in mice, Cell Metab, vol.7, pp.520-532, 2008.

H. Li, Q. Meng, X. F. Chen, S. Du, Y. Yu et al., ATF4 deficiency protects mice from high-carbohydrate-diet-induced liver steatosis, Biochem J, vol.438, pp.283-289, 2011.

G. Xiao, T. Zhang, S. Yu, S. Lee, V. Calabuig-navarro et al., ATF4 protein deficiency protects against high fructoseinduced hypertriglyceridemia in mice, J Biol Chem, vol.288, pp.25350-25361, 2013.

S. Wang, Z. Chen, V. Lam, J. Han, J. Hassler et al., IRE1a-XBP1s induces PDI expression to increase MTP activity for hepatic VLDL assembly and lipid homeostasis, Cell Metab, vol.16, pp.473-486, 2012.

A. H. Lee, E. F. Scapa, D. E. Cohen, and L. H. Glimcher, Regulation of hepatic lipogenesis by the transcription factor XBP1, Science (80-), vol.320, pp.1492-1496, 2008.

H. Yi, C. Gu, M. Li, Z. Zhang, Q. Li et al., PERK/eIF2a contributes to changes of insulin signaling in HepG2 cell induced by intermittent hypoxia, Life Sci, vol.181, pp.17-22, 2017.

N. Hosogai, A. Fukuhara, K. Oshima, Y. Miyata, S. Tanaka et al., Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation, Diabetes, vol.56, pp.901-911, 2007.

B. Kim, M. Kim, and C. K. Hyun, Syringin attenuates insulin resistance via adiponectin-mediated suppression of low-grade chronic inflammation and ER stress in high-fat diet-fed mice, Biochem Biophys Res Commun, vol.488, pp.40-45, 2017.

K. L. Lipson, S. G. Fonseca, S. Ishigaki, L. X. Nguyen, E. Foss et al., Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1, Cell Metab, vol.4, pp.245-254, 2006.

A. Lee, K. Heidtman, G. S. Hotamisligil, and L. H. Glimcher, Dual and opposing roles of the unfolded protein response regulated by IRE1alpha and XBP1 in proinsulin processing and insulin secretion, Proc Natl Acad Sci, vol.108, pp.8885-8890, 2011.

H. Seo, Y. D. Kim, K. Lee, M. Kim, M. Kim et al., Endoplasmic reticulum stress-induced activation of activating transcription factor 6 decreases insulin gene expression via up-regulation of orphan nuclear receptor small heterodimer partner, Endocrinology, vol.149, pp.3832-3841, 2008.

M. Shao, B. Shan, Y. Liu, Y. Deng, C. Yan et al., Hepatic IRE1a regulates fasting-induced metabolic adaptive programs through the XBP1s-PPARa axis signalling, 2014.

, Nat Commun, vol.5, p.3528

H. Kim, H. C. Tu, D. Ren, O. Takeuchi, J. R. Jeffers et al., Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis, Mol Cell, vol.36, pp.487-499, 2009.

P. Gomez-bougie, M. Halliez, P. Moreau, C. Pellatdeceunynck, and M. Amiot, Repression of Mcl-1 and disruption of the Mcl-1/Bak interaction in 271, 2016.

, The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. myeloma cells couple ER stress to mitochondrial apoptosis, The FEBS Journal, vol.286, pp.204-211, 2018.

J. Li, B. Lee, and A. S. Lee, Endoplasmic reticulum stress-induced apoptosis: multiple pathways and activation of p53-up-regulated modulator of apoptosis (PUMA) and NOXA by p53, J Biol Chem, vol.281, pp.7260-7270, 2006.

M. Ogata, S. Hino, A. Saito, K. Morikawa, S. Kondo et al., Autophagy is activated for cell survival after endoplasmic reticulum stress, Mol Cell Biol, vol.26, pp.9220-9231, 2006.

L. Yu, A. A. Su, H. Dutt, P. Freundt, E. Welsh et al., Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8, Science, vol.80, pp.1500-1502, 2004.

I. Kim, C. W. Shu, W. Xu, C. W. Shiau, D. Grant et al., Chemical biology investigation of cell death pathways activated by endoplasmic reticulum stress reveals cytoprotective modulators of ASK1, J Biol Chem, vol.284, pp.1593-1603, 2009.

X. Deng, L. Xiao, W. Lang, F. Gao, P. Ruvolo et al., Novel Role for JNK as a Stress-activated Bcl2 Kinase, J Biol Chem, vol.276, pp.23681-23688, 2001.

H. Puthalakath, L. A. Reilly, P. Gunn, L. Lee, P. N. Kelly et al., ER stress triggers apoptosis by activating BH3-only protein Bim, Cell, vol.129, pp.1337-1349, 2007.

H. Yamaguchi and H. Wang, CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells, J Biol Chem, vol.279, pp.45495-45502, 2004.

E. V. Maytin, M. Ubeda, J. C. Lin, and J. F. Habener, Stress-Inducible Transcription Factor CHOP/gadd153, 2001.

, Induces Apoptosis in Mammalian Cells via p38

, Kinase-Dependent and -Independent Mechanisms, Exp Cell Res, vol.267, pp.193-204

S. Wei, Y. Yu, R. M. Weiss, and R. B. Felder, Endoplasmic reticulum stress increases brain MAPK signaling, inflammation and renin-angiotensin system activity and sympathetic nerve activity in heart failure, 2016.

, Am J Physiol Heart Circ Physiol, vol.311, pp.871-880

K. Nolan, F. Walter, L. P. Tuffy, S. Poeschel, R. Gallagher et al., Endoplasmic reticulum stressmediated upregulation of miR-29a enhances sensitivity to neuronal apoptosis, Eur J Neurosci, vol.43, pp.640-652, 2016.

Y. Wu, X. Li, J. Jia, Y. Zhang, J. Li et al., Transmembrane E3 ligase RNF183 mediates ER stress-induced apoptosis by degrading Bcl-xL, Proc Natl Acad Sci, vol.115, pp.2762-2771, 2018.

L. Galluzzi, . Buqu-e-a, O. Kepp, L. Zitvogel, and G. Kroemer, Immunogenic cell death in cancer and infectious disease, Nat Rev Immunol, vol.17, p.97, 2016.

A. D. Garg and P. Agostinis, Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses, Immunol Rev, vol.280, pp.126-148, 2017.

H. Fan, H. B. Tang, J. Kang, L. Shan, H. Song et al., Involvement of endoplasmic reticulum stress in the necroptosis of microglia/macrophages after spinal cord injury, Neuroscience, vol.311, pp.362-373, 2015.

A. Linkermann and D. R. Green, N Engl J Med, vol.370, pp.455-465, 2014.

S. Saveljeva, M. Laughlin, S. L. Vandenabeele, P. Samali, A. Bertrand et al., Endoplasmic reticulum stress induces ligand-independent TNFR1-mediated necroptosis in L929 cells, Cell Death Dis, vol.6, 1587.

S. Pattingre, A. Tassa, X. Qu, R. Garuti, X. H. Liang et al., Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy, Cell, vol.122, pp.927-939, 2005.

V. Gandin, M. Pellei, F. Tisato, M. Porchia, C. Santini et al., A novel copper complex induces paraptosis in colon cancer cells via the activation of ER stress signalling, J Cell Mol Med, vol.16, pp.142-151, 2012.

J. Fan, H. Long, Y. Li, Y. Liu, W. Zhou et al., Edaravone protects against glutamate-induced PERK/EIF2a/ATF4 integrated stress response and activation of caspase-12, Brain Res, vol.1519, pp.1-8, 2013.

K. Akamatsu, M. Shibata, Y. Ito, Y. Sohma, H. Azuma et al., Riluzole induces apoptotic cell death in human prostate cancer cells via endoplasmic reticulum stress, Anticancer Res, vol.29, pp.2195-2204, 2009.

J. Cao, D. L. Dai, L. Yao, H. H. Yu, B. Ning et al., Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway, Mol Cell Biochem, vol.364, pp.115-129, 2012.

S. Du, J. Zhou, Y. Jia, and K. Huang, SelK is a novel ER stress-regulated protein and protects HepG2 cells from ER stress agent-induced apoptosis, Arch Biochem Biophys, vol.502, pp.137-143, 2010.

S. Li, F. Zhao, S. Cheng, X. Wang, and Y. Hao, Uric acid-induced endoplasmic reticulum stress triggers phenotypic change in rat glomerular mesangial cells, Nephrology, vol.18, pp.682-689, 2013.

A. Apostolou, Y. Shen, Y. Liang, J. Luo, and S. Fang, Armet, a UPR-upregulated protein, inhibits cell proliferation and ER stress-induced cell death, Exp Cell Res, vol.314, pp.2454-2467, 2008.

, The Authors. The FEBS Journal, vol.286, pp.241-278, 2018.

N. Morishima, K. Nakanishi, H. Takenouchi, T. Shibata, and Y. Yasuhiko, An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12, J Biol Chem, vol.277, pp.34287-34294, 2002.

A. Saito, K. Ochiai, S. Kondo, K. Tsumagari, T. Murakami et al., Endoplasmic reticulum stress response mediated by the PERK-eIF2(alpha)-ATF4 pathway is involved in osteoblast differentiation induced by BMP2, J Biol Chem, vol.286, pp.4809-4818, 2011.

Y. J. Chang, W. Y. Chen, C. Y. Huang, H. Liu, and P. L. Wei, Glucose-regulated protein 78 (GRP78) regulates colon cancer metastasis through EMT biomarkers and the NRF-2/HO-1 pathway, Tumor Biol, vol.36, pp.1859-1869, 2015.

H. Tanjore, D. Cheng, A. L. Degryse, D. F. Zoz, R. Abdolrasulnia et al., Alveolar epithelial cells undergo epithelial-tomesenchymal transition in response to endoplasmic reticulum stress, J Biol Chem, vol.286, pp.30972-30980, 2011.

X. T. Mo, W. C. Zhou, W. H. Cui, D. L. Li, L. C. Li et al., Inositol-requiring protein 1 -X-box-binding protein 1 pathway promotes epithelialmesenchymal transition via mediating snail expression in pulmonary fibrosis, Int J Biochem Cell Biol, vol.65, pp.230-238, 2015.

D. O. Minchenko, A. P. Kharkova, O. V. Halkin, L. L. Karbovskyi, and O. H. Minchenko, Effect of hypoxia on the expression of genes encoding insulinlike growth factors and some related proteins in u87 glioma cells without IRE1 function, Endocr Regul, vol.50, pp.43-54, 2016.

H. Li, X. Chen, Y. Gao, J. Wu, F. Zeng et al., XBP1 induces snail expression to promote epithelial-to-mesenchymal transition and invasion of breast cancer cells, Cell Signal, vol.27, pp.82-89, 2015.

C. Jin, J. Z. Chen, N. Lu, M. Liu, C. Hu et al., Activation of IRE1a-XBP1 pathway induces cell proliferation and invasion in colorectal carcinoma, Biochem Biophys Res Commun, vol.470, pp.75-81, 2016.

Y. X. Feng, E. S. Sokol, D. Vecchio, C. A. Sanduja, S. Claessen et al., Epithelial-to-mesenchymal transition activates PERK-eIF2a and sensitizes cells to endoplasmic reticulum stress, Cancer Discov, vol.4, pp.702-715, 2014.

S. Y. Moon, H. S. Kim, K. W. Nho, Y. Jang, and S. K. Lee, Endoplasmic reticulum stress induces epithelialmesenchymal transition through autophagy via activation of c-Src kinase, Nephron Exp Nephrol, vol.126, pp.127-140, 2014.

M. Greenwood, L. Bordieri, M. P. Greenwood, R. Melo, M. Colombari et al.,

D. Murphy, Transcription factor CREB3L1 regulates vasopressin gene expression in the rat hypothalamus, J Neurosci, vol.34, pp.3810-3820, 2014.

Y. Azuma, D. Hagiwara, W. Lu, Y. Morishita, H. Suga et al., Activating transcription factor 6a is required for the vasopressin neuron system to maintain water balance under dehydration in male mice, Endocrinology, vol.155, pp.4905-4914, 2014.

G. Marwarha, K. Claycombe, J. Schommer, D. Collins, and O. Ghribi, Palmitate-induced endoplasmic reticulum stress and subsequent C/EBPa homologous protein activation attenuates leptin and Insulin-like growth factor 1 expression in the brain, Cell Signal, vol.28, pp.1789-1805, 2016.

G. Marwarha, B. Dasari, and O. Ghribi, Endoplasmic reticulum stress-induced CHOP activation mediates the down-regulation of leptin in human neuroblastoma SH-SY5Y cells treated with the oysterol 27-hydroxycholesterol, Cell Signal, vol.24, pp.484-492, 2012.

N. Mart-inez-s-anchez, P. Seoane-collazo, C. Contreras, L. Varela, J. Villarroya et al., Hypothalamic AMPK-ER Stress-JNK1 axis mediates the central actions of thyroid hormones on energy balance, Cell Metab, vol.26, pp.212-229, 2017.

S. M. Zughaier, B. B. Stauffer, and N. A. Mccarty, Inflammation and ER stress downregulate BDH2 expression and dysregulate intracellular iron in macrophages, J Immunol Res, 2014.

K. Mori, Signalling pathways in the unfolded protein response: development from yeast to mammals, J Biochem, vol.146, pp.743-750, 2009.

M. Michalak and M. C. Gye, Endoplasmic reticulum stress in periimplantation embryos, Clin Exp Reprod Med, vol.42, pp.1-7, 2015.

J. Li, Z. Chen, L. Y. Gao, A. Colorni, M. Ucko et al., A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo, Mech Dev, vol.137, pp.33-44, 2015.

T. Ishikawa, M. Kashima, A. J. Nagano, T. Ishikawafujiwara, Y. Kamei et al., Unfolded protein response transducer IRE1-mediated signaling independent of XBP1 mRNA splicing is not required for growth and development of medaka fish, vol.6, pp.1-29, 2017.

C. E. Richardson, S. Kinkel, and D. H. Kim, Physiological IRE-1-XBP-1 and PEK-1 signaling in Caenorhabditis elegans larval development and immunity, PLoS Genet, vol.7, pp.1-10, 2011.

W. Shi, G. Xu, C. Wang, S. M. Sperber, Y. Chen et al., Heat shock 70-kDa protein 5 (Hspa5) is essential for pronephros, p.273, 2015.

, The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. formation by mediating retinoic acid signaling, The FEBS Journal, vol.286, pp.577-589, 2018.

S. Luo, C. Mao, B. Lee, and A. S. Lee, GRP78/BiP Is required for cell proliferation and protecting the inner cell mass from apoptosis during early mouse embryonic development, Mol Cell Biol, vol.26, pp.5688-5697, 2006.

X. Zhang, E. Szabo, M. Michalak, and M. Opas, Endoplasmic reticulum stress during the embryonic development of the central nervous system in the mouse, Int J Dev Neurosci, vol.25, pp.455-463, 2007.

. Kratochv-ilov-a-k, . Mor-a-n-l, &. Pad, S. Stejskal, S. et al., Koutn a I & Va nhara P (2016) The role of the endoplasmic reticulum stress in stemness, pluripotency and development, Eur J Cell Biol, vol.95, pp.115-123

L. Hao, R. Vassena, G. Wu, Z. Han, Y. Cheng et al., The unfolded protein response contributes to preimplantation mouse embryo death in the DDK syndrome, Biol Reprod, vol.80, pp.944-953, 2009.

Y. Yang, H. H. Cheung, J. Tu, K. Miu, and W. Y. Chan, New insights into the unfolded protein response in stem cells, Oncotarget, vol.7, pp.54010-54027, 2016.

K. E. Latham, Endoplasmic reticulum stress signaling in mammalian oocytes and embryos: life in balance, Int Rev Cell Mol Biol, vol.316, pp.227-265, 2015.

Y. Gao, D. J. Sartori, C. Li, Q. Yu, J. A. Kushner et al., PERK is required in the adult pancreas and is essential for maintenance of glucose homeostasis, Mol Cell Biol, vol.32, pp.5129-5139, 2012.

S. E. Bettigole, R. Lis, S. Adoro, A. H. Lee, L. A. Spencer et al., The transcription factor XBP1 is selectively required for eosinophil differentiation, Nat Immunol, vol.16, pp.829-837, 2015.

A. Leung, N. S. Gregory, L. Allen, and K. A. Sluka, Regular physical activity prevents chronic pain by altering muscle macrophage phenotype and increasing IL-10 in mice, Pain, vol.157, pp.70-79, 2017.

D. J. Todd, L. J. Mcheyzer-williams, C. Kowal, A. H. Lee, B. T. Volpe et al., XBP1 governs late events in plasma cell differentiation and is not required for antigen-specific memory B cell development, J Exp Med, vol.206, pp.2151-2159, 2009.

P. Van-galen, A. Kreso, N. Mbong, D. G. Kent, T. Fitzmaurice et al., The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress, Nature, vol.510, pp.268-272, 2014.

S. Matsuzaki, T. Hiratsuka, M. Taniguchi, K. Shingaki, T. Kubo et al., Physiological ER stress mediates the differentiation of fibroblasts, PLoS ONE, vol.10, pp.1-11, 2015.

A. M. Arensdorf, D. Diedrichs, and D. T. Rutkowski, Regulation of the transcriptome by ER stress: noncanonical mechanisms and physiological consequences, Front Genet, vol.4, pp.1-16, 2013.

T. Murakami, A. Saito, S. Hino, S. Kondo, S. Kanemoto et al., Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation, Nat Cell Biol, vol.11, pp.1205-1211, 2009.

K. Hamamura and H. Yokota, Stress to endoplasmic reticulum of mouse osteoblasts induces apoptosis and transcriptional activation for bone remodeling, FEBS Lett, vol.581, pp.1769-1774, 2007.

M. Cui, S. Kanemoto, X. Cui, M. Kaneko, R. Asada et al., OASIS modulates hypoxia pathway activity to regulate bone angiogenesis, Sci Rep, vol.5, p.16455, 2015.

S. Kondo, T. Murakami, K. Tatsumi, M. Ogata, S. Kanemoto et al., OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes, Nat Cell Biol, vol.7, pp.186-194, 2005.

R. Asada, A. Saito, N. Kawasaki, S. Kanemoto, H. Iwamoto et al., The endoplasmic reticulum stress transducer OASIS is involved in the terminal differentiation of goblet cells in the large intestine, J Biol Chem, vol.287, pp.8144-8153, 2012.

A. Saito, Physiological functions of endoplasmic reticulum stress transducer OASIS in central nervous system, Anat Sci Int, vol.89, pp.11-20, 2014.

J. M. Van-der-harg, J. C. Van-heest, F. N. Bangel, S. Patiwael, J. Van-weering et al., The UPR reduces glucose metabolism via IRE1 signaling, Biochim Biophys Acta, vol.1864, pp.655-665, 2017.

I. Topisirovic and N. Sonenberg, mRNA translation and energy metabolism in cancer: the role of the MAPK and mTORC1 Pathways, Cold Spring Harb Symp Quant Biol, vol.76, pp.355-367, 2011.

C. E. Lowe, R. J. Dennis, U. Obi, S. O'rahilly, and J. J. Rochford, Investigating the involvement of the ATF6a pathway of the unfolded protein response in adipogenesis, Int J Obes, vol.36, pp.1248-1251, 2012.

K. L. Lipson, R. Ghosh, and F. Urano, The role of IRE1a in the degradation of insulin mRNA in pancreatic b-cells, PLoS ONE, vol.3, pp.1-7, 2008.

N. Zhang, X. Yang, F. Yuan, L. Zhang, Y. Wang et al., Increased amino acid uptake supports autophagydeficient cell survival upon glutamine deprivation, Cell Rep, vol.10, pp.3006-3020, 2018.

, The Authors. The FEBS Journal, vol.286, pp.241-278, 2018.

C. Rubio-patiño, J. P. Bossowski, D. Donatis, G. M. Mondrag-on, L. Villa et al., Low-protein diet induces IRE1a-dependent anticancer immunosurveillance, Cell Metab, vol.27, pp.828-842, 2018.

Z. Xue, Y. He, K. Ye, Z. Gu, Y. Mao et al., A conserved structural determinant located at the interdomain region of mammalian inositol-requiring enzyme 1a, J Biol Chem, vol.286, pp.30859-30866, 2011.

D. D. Waller, G. Jansen, M. Golizeh, C. Martel-lorion, K. Dejgaard et al., A covalent cysteinetargeting kinase inhibitor of Ire1 permits allosteric control of endoribonuclease activity, ChemBioChem, vol.17, pp.843-851, 2016.

R. L. Wiseman, Y. Zhang, K. Lee, H. P. Harding, C. M. Haynes et al., Flavonol activation defines an unanticipated ligandbinding site in the kinase-RNase domain of IRE1, 2010.

, Mol Cell, vol.38, pp.291-304

J. Rong, I. Pass, P. W. Diaz, T. A. Ngo, M. Sauer et al., Cell-based high-throughput luciferase reporter gene assays for identifying and profiling chemical modulators of endoplasmic reticulum signaling protein, IRE1, J Biomol Screen, vol.20, pp.1232-1245, 2015.

H. C. Feldman, M. Tong, L. Wang, R. Meza-acevedo, T. A. Gobillot et al., Structural and functional analysis of the allosteric inhibition of IRE1a with ATP-competitive ligands, ACS Chem Biol, vol.11, pp.2195-2205, 2016.

P. E. Harrington, K. Biswas, D. Malwitz, A. S. Tasker, C. Mohr et al., Unfolded protein response in cancer: IRE1a inhibition by selective kinase ligands does not impair tumor cell viability, ACS Med Chem Lett, vol.6, pp.68-72, 2015.

L. Wang, B. Perera, S. B. Hari, B. Bhhatarai, B. J. Backes et al., Divergent allosteric control of the IRE1a endoribonuclease using kinase inhibitors, Nat Chem Biol, vol.8, pp.982-989, 2012.

B. K. Jha, I. Polyakova, P. Kessler, B. Dong, B. Dickerman et al., Inhibition of RNase L and RNA-dependent protein kinase (PKR) by sunitinib impairs antiviral innate immunity, J Biol Chem, vol.286, pp.26319-26326, 2011.

K. Volkmann, J. L. Lucas, D. Vuga, X. Wang, D. Brumm et al., Potent and selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease, J Biol Chem, vol.286, pp.12743-12755, 2011.

B. C. Cross, P. J. Bond, P. G. Sadowski, B. K. Jha, J. Zak et al., The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule, Proc Natl Acad Sci, vol.109, pp.869-878, 2012.

N. Mimura, M. Fulciniti, G. Gorgun, Y. Tai, D. Cirstea et al., Blockade of XBP1 splicing by inhibition of IRE1 is a promising therapeutic option in multiple myeloma, Blood, vol.119, pp.5772-5781, 2012.

I. Papandreou, N. C. Denko, M. Olson, H. Van-melckebeke, L. S. Tam et al., Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma, Blood, vol.117, pp.1311-1314, 2011.

M. Ri, E. Tashiro, D. Oikawa, S. Shinjo, M. Tokuda et al., Identification of Toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress-induced XBP1 mRNA splicing, Blood Cancer J, vol.2, p.79, 2012.

S. M. Tomasio, H. P. Harding, R. D. Cross, B. Bond, and P. J. , Selective inhibition of the unfolded protein response: targeting catalytic sites for Schiff base modification, Mol BioSyst, vol.9, pp.2408-2416, 2013.

D. Jiang, C. Lynch, B. C. Medeiros, M. Liedtke, R. Bam et al., Identification of Doxorubicin as an Inhibitor of the IRE1a-XBP1 Axis of the Unfolded Protein Response, Sci Rep, vol.6, p.33353, 2016.

B. K. Park, A. Boobis, S. Clarke, C. Goldring, D. Jones et al., Managing the challenge of chemically reactive metabolites in drug development, Nat Rev Drug Discov, vol.10, pp.292-306, 2011.

A. J. Wilson, Inhibition of protein-protein interactions using designed molecules, Chem Soc Rev, vol.38, p.3289, 2009.

C. Atkins, Q. Liu, E. Minthorn, S. Zhang, D. J. Figueroa et al., Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity, Cancer Res, vol.73, 1993.

J. M. Axten, J. R. Medina, Y. Feng, A. Shu, S. P. Romeril et al., Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), J Med Chem, vol.55, pp.7193-7207, 2012.

, The Authors. The FEBS Journal, vol.286, pp.241-278, 2018.

N. Verity, J. M. Axten, C. A. Ortori, A. E. Willis, P. M. Fischer et al., Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prioninfected mice, Sci Transl Med, vol.138, pp.206-138, 2013.

H. P. Harding, H. Zeng, Y. Zhang, R. Jungries, P. Chung et al., Diabetes mellitus and exocrine pancreatic dysfunction in perk-/-mice reveals a role for translational control in secretory cell survival, Mol Cell, vol.7, pp.1153-1163, 2001.

D. Rojas-rivera, T. Delvaeye, R. Roelandt, W. Nerinckx, K. Augustyns et al., When PERK inhibitors turn out to be new potent RIPK1 inhibitors: critical issues on the specificity and use of GSK2606414 and GSK2656157, Cell Death Differ, vol.24, pp.1100-1110, 2017.

C. Sidrauski, J. C. Tsai, M. Kampmann, B. R. Hearn, P. Vedantham et al., Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response, p.7314, 2015.

Y. Sekine, A. Zyryanova, A. Crespillo-casado, P. M. Fischer, H. P. Harding et al., Stress responses. Mutations in a translation initiation factor identify the target of a memory-enhancing compound, Science, vol.348, pp.1027-1030, 2015.

M. Halliday, H. Radford, Y. Sekine, J. Moreno, N. Verity et al., Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity, Cell Death Dis, vol.6, p.1672, 2015.

C. Sidrauski, A. M. Mcgeachy, N. Ingolia, and P. Walter, The small molecule ISRIB reverses the effects of eIF2a phosphorylation on translation and stress granule assembly, pp.1-16, 2015.

C. M. Gallagher, C. Garri, E. L. Cain, K. Ang, C. G. Wilson et al., Ceapins are a new class of unfolded protein response inhibitors, selectively targeting the ATF6a branch, Elife, vol.5, pp.1-33, 2016.

C. Gallagher and P. Walter, Ceapins inhibit ATF6a signaling by selectively preventing transport of ATF6a to the Golgi apparatus during ER stress, vol.5, p.11880, 2016.

L. Bu, H. Yu, L. Fan, X. Li, F. Wang et al., Melatonin, a novel selective ATF-6 inhibitor, induces human hepatoma cell apoptosis through COX-2 downregulation, World J Gastroenterol, vol.23, pp.986-998, 2017.

S. Xu, A. N. Butkevich, R. Yamada, Y. Zhou, B. Debnath et al., Discovery of an orally active small-molecule irreversible inhibitor of protein disulfide isomerase for ovarian cancer treatment, Proc Natl Acad Sci, vol.109, pp.16348-16353, 2012.

R. Banerjee, N. J. Pace, D. R. Brown, and E. Weerapana, 5-Triazine as a modular scaffold for covalent inhibitors with streamlined target identification, J Am Chem Soc, vol.1, pp.2497-2500, 2013.

E. Chevet, C. Hetz, and A. Samali, Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis, Cancer Discov, vol.5, pp.586-597, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01152845

T. Okada, K. Haze, S. Nadanaka, H. Yoshida, N. G. Seidah et al., A serine protease inhibitor prevents endoplasmic reticulum stress-induced cleavage but not transport of the membrane-bound transcription factor ATF6, J Biol Chem, vol.278, pp.31024-31032, 2003.

D. Doultsinos, A. T. Lhomond, S. Dejeans, N. Gu, P. Chevet et al., Control of the unfolded protein response in health and disease, SLAS Discov, vol.22, pp.787-800, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01585901

A. Delpino and M. Castelli, The 78 kDa glucoseregulated protein (GRP78/BIP) is expressed on the cell membrane, is released into cell culture medium and is also present in human peripheral circulation, Biosci Rep, vol.22, pp.407-420, 2002.

S. D. Chessler and P. H. Byers, BiP binds type I procollagen pro alpha chains with mutations in the carboxyl-terminal propeptide synthesized by cells from patients with osteogenesis imperfecta, J Biol Chem, vol.268, pp.18226-18233, 1993.

L. Booth, J. L. Roberts, D. R. Cash, S. Tavallai, S. Jean et al., GRP78/BiP/HSPA5/ DNA K is a universal therapeutic target for human disease, J Cell Physiol, vol.230, pp.1661-1676, 2015.

H. Zhu, X. Chen, B. Chen, B. Chen, W. Song et al., Activating transcription factor 4 promotes esophageal squamous cell carcinoma invasion and metastasis in mice and is associated with poor prognosis in human patients, PLoS ONE, vol.9, pp.1-11, 2014.

J. Yang, D. Cheng, S. Zhou, B. Zhu, T. Hu et al., Overexpression of X-Box binding protein 1 (XBP1) correlates to poor prognosis and up-regulation of PI3K/mTOR in human osteosarcoma, Int J Mol Sci, vol.16, pp.28635-28646, 2015.

B. Bujisic, D. Gassart, A. Tallant, R. Demaria, O. Zaffalon et al., Impairment of both IRE1 expression and XBP1 activation is a hallmark of GCB DLBCL and contributes to tumor growth, Blood, vol.129, pp.2420-2428, 2017.

A. Kaser, A. Lee, A. Franke, J. N. Glickman, S. Zeissig et al., , p.276

, The Authors. The FEBS Journal, vol.286, pp.241-278, 2018.

L. H. Glimcher, , p.1, 2008.

J. D. Atkin, M. A. Farg, A. K. Walker, C. Mclean, D. Tomas et al., Endoplasmic reticulum stress and induction of the unfolded protein response in human sporadic amyotrophic lateral sclerosis, Neurobiol Dis, vol.30, pp.400-407, 2008.

G. Nardo, S. Pozzi, M. Pignataro, E. Lauranzano, G. Spano et al., Amyotrophic lateral sclerosis multiprotein biomarkers in peripheral blood mononuclear cells, PLoS ONE, vol.6, 2011.

Y. Kim, H. Lee, S. R. Manson, M. Lindahl, B. Evans et al., Mesencephalic astrocyte-derived neurotrophic factor as a urine biomarker for endoplasmic reticulum stressrelated kidney diseases, J Am Soc Nephrol, vol.27, pp.2974-2982, 2016.

I. Mami, N. Bouvier, E. Karoui, K. Gallazzini, M. Rabant et al., Angiogenin mediates cellautonomous translational control under endoplasmic reticulum stress and attenuates kidney injury, J Am Soc Nephrol, vol.27, pp.863-876, 2016.

D. Dadey, V. Kapoor, K. Hoye, A. Khudanyan, A. Collins et al., Antibody targeting GRP78 enhances the efficacy of radiation therapy in human glioblastoma and non-small-cell lung cancer cell lines and tumor models, Clin Cancer Res, vol.23, pp.2556-2564, 2016.

Y. G. Lin, J. Shen, E. Yoo, R. Liu, H. Y. Yen et al., Targeting the glucose-regulated protein-78 abrogates Pten-null driven AKT activation and endometrioid tumorigenesis, Oncogene, vol.34, pp.5418-5426, 2015.

Y. G. Chen, B. T. Ashok, X. Liu, V. Garikapaty, A. Mittelman et al., Induction of heat shock protein gp96 by immune cytokines, Cell Stress Chaperones, vol.8, pp.242-248, 2003.

K. Zhang, Z. Peng, X. Huang, Z. Qiao, X. Wang et al., Phase II trial of adjuvant immunotherapy with autologous tumor-derived Gp96 vaccination in patients with gastric cancer, J Cancer, vol.8, pp.1826-1832, 2017.

S. Tian, Z. Liu, C. Donahue, L. D. Falo, &. You et al., Genetic targeting of the active transcription factor XBP1s to dendritic cells potentiates vaccineinduced prophylactic and therapeutic antitumor immunity, Mol Ther, vol.20, pp.432-442, 2012.

M. Miller, P. Rosenthal, A. Beppu, L. James, H. M. Hoffman et al., ORMDL3 transgenic mice have increased airway remodeling and airway responsiveness characteristic of asthma, J Immunol, vol.192, pp.3475-3487, 2014.

M. W. Graner, K. O. Lillehei, and E. Katsanis, Endoplasmic reticulum chaperones and their roles in the immunogenicity of cancer vaccines, Front Oncol, vol.4, pp.1-12, 2015.

M. W. Graner, Y. Zeng, H. Feng, and E. Katsanis, Tumor-derived chaperone-rich cell lysates are effective therapeutic vaccines against a variety of cancers, Cancer Immunol Immunother, vol.52, pp.226-234, 2003.

U. K. Rapp and S. H. Kaufmann, DNA vaccination with gp96-peptide fusion proteins induces protection against an intracellular bacterial pathogen, Int Immunol, vol.16, pp.597-605, 2004.

J. Qian, S. Hong, S. Wang, L. Zhang, L. Sun et al., Myeloma cell linederived, pooled heat shock proteins as a universal vaccine for immunotherapy of multiple myeloma, Blood, vol.114, pp.3880-3890, 2009.

Y. Argon and B. B. Simen, GRP94, an ER chaperone with protein and peptide binding properties, Semin Cell Dev Biol, vol.10, pp.495-505, 1999.

D. Liu, X. Liu, T. Zhou, W. Yao, J. Zhao et al., IRE1-RACK1 axis orchestrates ER stress preconditioning-elicited cytoprotection from ischemia/ reperfusion injury in liver, J Mol Cell Biol, vol.8, pp.144-156, 2015.

B. Bailly-maitre, C. Fondevila, F. Kaldas, N. Droin, F. Luciano et al., Cytoprotective gene bi-1 is required for intrinsic protection from endoplasmic reticulum stress and ischemia-reperfusion injury, Proc Natl Acad Sci, vol.103, pp.2809-2814, 2006.

X. Bi, G. Zhang, X. Wang, C. Nguyen, H. I. May et al., Endoplasmic reticulum chaperone GRP78 protects heart from ischemia/reperfusion injury through Akt activation, Circ Res, vol.122, pp.1545-1554, 2018.

J. J. Martindale, R. Fernandez, D. Thuerauf, R. Whittaker, N. Gude et al., Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6, Circ Res, vol.98, pp.1186-1193, 2006.

C. Peralta and C. Brenner, Endoplasmic reticulum stress inhibition enhances liver tolerance to ischemia/ reperfusion, Curr Med Chem, vol.18, pp.2016-2024, 2011.

E. Folch-puy, A. Panisello, J. Oliva, A. Lopez, C. C. Ben-itez et al., Relevance of endoplasmic reticulum stress cell signaling in liver cold ischemia reperfusion injury, Int J Mol Sci, vol.17, pp.1-12, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01324400

S. K. Kwon, M. Ahn, H. J. Song, S. K. Kang, S. B. Jung et al., Nafamostat mesilate attenuates transient focal, p.277, 2015.

, The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies. ischemia/reperfusion-induced brain injury via the inhibition of endoplasmic reticulum stress, The FEBS Journal, vol.286, pp.12-20, 2018.

H. Zhang, Y. Yue, T. Sun, X. Wu, and S. Xiong, Transmissible endoplasmic reticulum stress from myocardiocytes to macrophages is pivotal for the pathogenesis of CVB3-induced viral myocarditis, Sci Rep, vol.7, p.42162, 2017.

J. J. Rodvold, K. T. Chiu, N. Hiramatsu, J. K. Nussbacher, V. Galimberti et al., Intercellular transmission of the unfolded protein response promotes survival and drug resistance in cancer cells, Sci Signal, vol.10, 2017.

R. J. Brownlie, L. K. Myers, P. H. Wooley, V. M. Corrigall, M. D. Bodman-smith et al., Treatment of murine collagen-induced arthritis by the stress protein BiP Via interleukin-4 -producing regulatory t cells a novel function for an ancient protein, Arthritis Rheumatol, vol.54, pp.854-863, 2006.

B. Kirkham, K. Chaabo, C. Hall, T. Garrood, T. Mant et al., Safety and patient response as indicated by biomarker changes to binding immunoglobulin protein in the phase I/IIA RAGULA clinical trial in rheumatoid arthritis, Rheumatology (United Kingdom), vol.55, 1993.

J. M. Axten, S. P. Romeril, A. Shu, J. Ralph, J. R. Medina et al., Discovery of GSK2656157: an optimized perk inhibitor selected for preclinical development, ACS Med Chem Lett, vol.4, pp.964-968, 2013.

M. Boyce, K. F. Bryant, C. Jousse, K. Long, H. P. Harding et al., A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress, Science, vol.307, pp.935-939, 2005.

S. Saxena, E. Cabuy, and P. Caroni, A role for motoneuron subtype-selective ER stress in disease manifestations of FALS mice, Nat Neurosci, vol.12, pp.627-636, 2009.

E. Colla, P. Coune, Y. Liu, O. Pletnikova, J. C. Troncoso et al., Endoplasmic reticulum stress is important for the manifestations of a-synucleinopathy in vivo, J Neurosci, vol.32, pp.3306-3320, 2012.

L. Wang, B. Popko, E. Tixier, and R. P. Roos, Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis, Neurobiol Dis, vol.71, pp.317-324, 2014.

I. Das, A. Krzyzosiak, K. Schneider, L. Wrabetz, D. Antonio et al., Preventing proteostasis diseases by selective inhibition of a phosphatase regulatory subunit, Science, vol.348, pp.239-242, 2015.

A. Lee, N. N. Iwakoshi, and L. H. Glimcher, XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response, Mol Cell Biol, vol.23, pp.7448-7459, 2003.

R. Ghosh, L. Wang, E. S. Wang, B. Perera, A. Igbaria et al., Allosteric inhibition of the IRE1a RNase preserves cell viability and function during endoplasmic reticulum stress, Cell, vol.158, pp.534-548, 2014.

T. Kawamura, E. Tashiro, K. Shindo, and M. Imoto, SAR study of a novel triene-ansamycin group compound, quinotrierixin, and related compounds, as inhibitors of ER stress-induced XBP1 activation II. Structure elucidation, J Antibiot (Tokyo), vol.61, pp.312-317, 2008.

D. Chen, K. R. Landis-piwowar, M. S. Chen, and Q. P. Dou, Inhibition of proteasome activity by the dietary flavonoid apigenin is associated with growth inhibition in cultured breast cancer cells and xenografts, Breast Cancer Res, vol.9, p.80, 2007.

M. Zhu, S. Rajamani, J. Kaylor, S. Han, F. Zhou et al., The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils, J Biol Chem, vol.279, pp.26846-26857, 2004.

D. Kim, K. Ha, D. Kwon, M. Kim, H. Kim et al., Kaempferol protects ischemia/reperfusion-induced cardiac damage through the regulation of endoplasmic reticulum stress, Immunopharmacol Immunotoxicol, vol.30, pp.257-270, 2008.

L. Plate, C. B. Cooley, J. J. Chen, R. J. Paxman, C. M. Gallagher et al., Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation, vol.5, p.15550, 2016.

A. Higa, S. Taouji, S. Lhomond, D. Jensen, M. E. Fernandezzapico et al., Endoplasmic reticulum stressactivated transcription factor atf6a requires the disulfide isomerase PDIA5 to modulate chemoresistance, Mol Cell Biol, vol.34, pp.1839-1849, 2014.

, The Authors. The FEBS Journal, vol.286, pp.241-278, 2018.