, Brain Stimul, vol.11, issue.5, pp.1008-1023, 2018.

M. Wischnewski, M. Engelhardt, M. A. Salehinejad, D. Schutter, M. F. Kuo et al., NMDA Receptor-Mediated Motor Cortex Plasticity After 20 Hz Transcranial Alternating Current Stimulation, Cereb Cortex, 2018.

C. Fonteneau, J. Redoute, F. Haesebaert, L. Bars, D. Costes et al., Frontal Transcranial Direct Current Stimulation Induces Dopamine Release in the Ventral Striatum in Human, Cereb Cortex, vol.28, issue.7, pp.2636-2646, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02106917

C. E. Santana-gómez, D. Alcántara-gonzález, H. Luna-munguía, I. Bañuelos-cabrera, V. Magdalenomadrigal et al., Transcranial focal electrical stimulation reduces the convulsive expression and amino acid release in the hippocampus during pilocarpineinduced status epilepticus in rats, Epilepsy Behav, vol.49, pp.33-42, 2015.

M. Pugliatti, E. Beghi, L. Forsgren, M. Ekman, and P. Sobocki, Estimating the cost of epilepsy in Europe: a review with economic modeling, Estimating the cost of epilepsy in Europe: a review with economic modeling, Epilepsia, vol.48, issue.12, pp.2224-2257, 2007.

F. Bartolomei, S. Lagarde, F. Wendling, A. Mcgonigal, V. Jirsa et al., Defining epileptogenic networks: Contribution of SEEG and signal analysis, Epilepsia, vol.58, issue.7, pp.1131-1147, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01618932

(. , This paper provides a historical overview of the emerging epileptogenic network concept, emphasizing the idea that "focal" epilepsies actually involve networks at varying scales, how to identify them, and the practical relevance of these findings to therapy

F. Wendling, F. Bartolomei, F. Mina, C. Huneau, and &. Benquet, Interictal spikes, fast ripples and seizures in partial epilepsies-combining multi-level computational models with experimental data, The European journal of neuroscience, vol.36, issue.2, pp.2164-77, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00728701

F. Hutchings, C. E. Han, S. S. Keller, B. Weber, P. N. Taylor et al., Predicting Surgery Targets in Temporal Lobe Epilepsy through Structural Connectome Based Simulations, PLoS Comput Biol, vol.11, pp.1004642-1004666, 2015.

A. N. Khambhati, K. A. Davis, T. H. Lucas, B. Litt, and D. S. Bassett, Virtual Cortical Resection Reveals Push-Pull Network Control Preceding Seizure Evolution, Neuron, vol.91, pp.1170-1182, 2016.

M. Goodfellow, C. Rummel, E. Abela, M. P. Richardson, K. Schindler et al., Estimation of brain network ictogenicity predicts outcome from epilepsy surgery, Sci. Rep, vol.6, pp.1-13, 2016.

T. Proix, F. Bartolomei, M. Guye, and V. K. Jirsa, Individual brain structure and modelling predict seizure propagation, Brain, vol.140, pp.641-654, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01657966

N. Sinha, J. Dauwels, M. Kaiser, S. S. Cash, B. Westover et al., Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling, Brain, vol.140, p.319, 2017.

, In this work, authors predict surgial outcomes in epilepsy patients with high accuracy using personalized brain network models. They substitute the functional connectivity of the brain, derived from ECoG recordings of epileptic patients

G. G. Regner, P. Pereira, D. T. Leffa, C. De-oliveira, R. Vercelino et al., , 2018.

, Preclinical to Clinical Translation of Studies of Transcranial Direct-Current Stimulation in the Treatment of Epilepsy: A Systematic Review, Frontiers in neuroscience, vol.12, p.189

M. D. Fox, R. L. Buckner, H. Liu, M. M. Chakravarty, A. M. Lozano et al., Linking invasive and noninvasive brain stimulation, Proceedings of the National Academy of Sciences, vol.111, issue.41, 2014.

B. Otal, A. Dutta, Á. Foerster, O. Ripolles, A. Kuceyeski et al., Opportunities for Guided Multichannel Non-invasive Transcranial Current Stimulation in Poststroke Rehabilitation, Front. Neurol, vol.7, p.21, 2016.

, This paper discusses potential opportunities for neuroimaging-guided tDCS-based rehabilitation strategies after stroke that could be personalized using brain networks

J. Alstott, M. Breakspear, P. Hagmann, L. Cammoun, and O. Sporns, Modeling the Impact of Lesions in the Human Brain, PLoS Comput Biol, vol.5, pp.1000408-1000420, 2009.

H. Aerts, W. Fias, K. Caeyenberghs, and D. Marinazzo, Brain networks under attack: robustness properties and the impact of lesions, Brain, vol.139, pp.3063-3083, 2016.

M. Corbetta, L. Ramsey, A. Callejas, A. Baldassarre, C. D. Hacker et al.,

S. V. Siegel, J. Astafiev, K. Rengachary, C. E. Zinn, L. T. Lang et al., Common behavioral clusters and subcortical anatomy in stroke, Neuron, vol.85, issue.5, pp.927-941, 2015.

A. Kuceyeski, B. B. Navi, H. Kamel, A. Raj, N. Relkin et al., Structural connectome disruption at baseline predicts 6months poststroke outcome, Hum. Brain Mapp, vol.37, pp.2587-2601, 2016.

, Structural connectome disruption is estimated using the NeMo tool developed by the authors (which allows estimation of connectome disruption from MRI). The measures at baseline predict 6-months post-stroke outcome in various functional domains including cognition, motor function