E. Cutz, J. M. Rhoads, B. Drumm, P. M. Sherman, P. R. Durie et al., Microvillus inclusion disease: an inherited defect of brush-border assembly and differentiation, N Engl J Med, vol.320, pp.646-651, 1989.

G. F. Vogel, M. W. Hess, K. Pfaller, L. A. Huber, A. R. Janecke et al., Towards understanding microvillus inclusion disease, Mol Cell Pediatr, vol.3, p.3, 2016.

A. W. Overeem, C. Posovszky, E. Rings, B. Giepmans, and S. Van-ijzendoorn, The role of enterocyte defects in the pathogenesis of congenital diarrheal disorders, Dis Model Mech, vol.9, pp.1-12, 2016.

T. Sato, S. Mushiake, Y. Kato, K. Sato, M. Sato et al., The Rab8 GTPase regulates apical protein localization in intestinal cells, Nature, vol.448, pp.366-369, 2007.

T. Müller, M. W. Hess, N. Schiefermeier, K. Pfaller, H. L. Ebner et al., MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity, Nat Genet, vol.40, pp.1163-1165, 2008.

J. T. Roland, D. M. Bryant, A. Datta, A. Itzen, K. E. Mostov et al., Rab GTPase-Myo5B complexes control membrane recycling and epithelial polarization, Proc Natl Acad Sci, vol.108, pp.2789-2794, 2011.

B. C. Knowles, J. T. Roland, M. Krishnan, M. J. Tyska, L. A. Lapierre et al.,

, Myosin Vb uncoupling from RAB8A and RAB11A elicits microvillus inclusion disease, J Clin Invest, vol.124, pp.2947-2962, 2014.

C. L. Wiegerinck, A. R. Janecke, K. Schneeberger, G. F. Vogel, D. Y. Van-haaften-visser et al., Loss of syntaxin 3 causes variant microvillus inclusion disease, Gastroenterology, vol.147, pp.65-68, 2014.

M. Côte, M. M. Ménager, A. Burgess, N. Mahlaoui, C. Picard et al., Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells, J Clin Invest, vol.119, pp.3765-3773, 2009.

J. Pagel, K. Beutel, K. Lehmberg, F. Koch, A. Maul-pavicic et al., Distinct mutations in STXBP2 are associated with variable clinical presentations in patients with familial hemophagocytic lymphohistiocytosis type 5 (FHL5), Blood, vol.119, pp.6016-6024, 2012.

P. Stepensky, J. Bartram, T. F. Barth, K. Lehmberg, P. Walther et al., Persistent defective membrane trafficking in epithelial cells of patients with familial hemophagocytic lymphohistiocytosis type 5 due to STXBP2/MUNC18-2 mutations, Pediatr Blood Cancer, vol.60, pp.1215-1222, 2013.

G. F. Vogel, J. M. Van-rijn, I. M. Krainer, A. R. Janecke, C. Posovzsky et al., Disrupted apical exocytosis of cargo vesicles causes enteropathy in FHL5 patients with Munc18-2 mutations, JCI Insight, vol.2, issue.14, p.94564, 2017.

G. F. Vogel, K. Klee, A. R. Janecke, T. Müller, M. W. Hess et al., Cargo-selective apical exocytosis in epithelial cells is conducted by Myo5B, Slp4a, Vamp7, and Syntaxin 3, J Cell Biol, vol.211, pp.587-604, 2015.

G. Michaux, D. Massey-harroche, O. Nicolle, M. Rabant, N. Brousse et al., The localisation of the apical Par/Cdc42 polarity module is specifically affected in microvillus inclusion disease, Biol Cell, vol.108, pp.19-28, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01231419

A. D. Phillips and J. Schmitz, Familial microvillous atrophy: a clinicopathological survey of 23 cases, J Pediatr Gastroenterol Nutr, vol.14, pp.380-396, 1992.

G. W. Mierau, E. J. Wills, J. Wyatt-ashmead, E. J. Hoffenberg, and E. Cutz, Microvillous inclusion disease: report of a case with atypical features, Ultrastruct Pathol, vol.25, pp.275-279, 2001.

G. M. Groisman, M. Amar, and E. Livne, CD10: a valuable tool for the light microscopic diagnosis of microvillous inclusion disease (familial microvillous atrophy), Am J Surg Pathol, vol.26, pp.902-907, 2002.

A. D. Phillips, M. Szafranski, L. Man, and W. J. Wall, Periodic acid-Schiff staining abnormality in microvillous atrophy: photometric and ultrastructural studies, J Pediatr Gastroenterol Nutr, vol.30, pp.34-42, 2000.

T. C. Iancu, M. Mahajnah, I. Manov, and R. Shaoul, Microvillous inclusion disease: ultrastructural variability, Ultrastruct Pathol, vol.31, pp.173-188, 2007.

V. G. Weis, B. C. Knowles, E. Choi, A. E. Goldstein, J. A. Williams et al., Loss of MYO5B in mice recapitulates microvillus inclusion disease and reveals an apical trafficking pathway distinct to neonatal duodenum, Cell Mol Gastroenterol Hepatol, vol.2, pp.131-157, 2016.

K. Schneeberger, G. F. Vogel, H. Teunissen, D. D. Van-ommen, H. Begthel et al., An inducible mouse model for microvillus inclusion disease reveals a role for myosin Vb in apical and basolateral trafficking, Proc Natl Acad Sci U S A, vol.112, pp.12408-12413, 2015.

F. M. Ruemmele, T. Müller, N. Schiefermeier, H. L. Ebner, S. Lechner et al., Loss-of-function of MYO5B is the main cause of microvillus inclusion disease: 15 novel mutations and a CaCo-2 RNAi cell model, Hum Mutat, vol.31, pp.544-551, 2010.

T. Sato, R. G. Vries, H. J. Snippert, M. Van-de-wetering, N. Barker et al., Single Lgr5 stem cells build cryptvillus structures in vitro without a mesenchymal niche, Nature, vol.459, pp.262-265, 2009.

W. De-lau, N. Barker, T. Y. Low, B. Koo, V. Li et al., Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling, Nature, vol.476, pp.293-297, 2011.

B. Koo, M. Spit, I. Jordens, T. Y. Low, D. E. Stange et al., Tumour suppressor RNF43 is a stem-cell E3 ligase that induces endocytosis of Wnt receptors, Nature, vol.488, pp.665-669, 2012.

X. Yin, H. F. Farin, J. H. Van-es, H. Clevers, R. Langer et al., Niche-independent high-purity cultures of Lgr5þ intestinal stem cells and their progeny, Nat Methods, vol.11, pp.106-112, 2014.

G. F. Vogel, A. R. Janecke, I. M. Krainer, K. Gutleben, B. Witting et al., Abnormal Rab11-Rab8-vesicles cluster in enterocytes of patients with microvillus inclusion disease, Traffic, vol.18, pp.453-464, 2017.

Q. Feng, E. M. Bonder, A. C. Engevik, L. Zhang, M. J. Tyska et al., Disruption of Rab8a and Rab11a causes formation of basolateral microvilli in neonatal enteropathy, J Cell Sci, vol.130, pp.2491-2505, 2017.

J. F. Dekkers, G. Berkers, E. Kruisselbrink, A. Vonk, H. R. De-jonge et al., Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis, Sci Transl Med, vol.8, pp.344-84, 2016.

A. E. Bigorgne, H. F. Farin, R. Lemoine, N. Mahlaoui, N. Lambert et al., TTC7A mutations disrupt intestinal epithelial apicobasal polarity, J Clin Invest, vol.124, pp.328-337, 2014.

T. Sato, D. E. Stange, M. Ferrante, R. Vries, J. H. Van-es et al., Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium, Gastroenterology, vol.141, pp.1762-1772, 2011.

B. Koo, D. E. Stange, T. Sato, W. Karthaus, H. F. Farin et al., Controlled gene expression in primary Lgr5 organoid cultures, Nat Methods, vol.9, pp.81-83, 2011.

I. Kolotuev, Positional correlative anatomy of invertebrate model organisms increases efficiency of TEM data production, Microsc Microanal, vol.20, pp.1392-1403, 2014.