H. Davies, Mutations of the BRAF gene in human cancer, Nature, vol.417, pp.949-954, 2002.

P. B. Chapman, Improved survival with vemurafenib in melanoma with BRAF V600E mutation, N. Engl. J. Med, vol.364, pp.2507-2516, 2011.

N. Wagle, Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling, J. Clin. Oncol, vol.29, pp.3085-3096, 2011.

L. Boussemart, Secondary tumors arising in patients undergoing BRAF inhibitor therapy exhibit increased BRAF-CRAF heterodimerization, Cancer Res, vol.76, pp.1476-1485, 2016.

R. B. Corcoran, J. Settleman, and J. A. Engelman, Potential therapeutic strategies to overcome acquired resistance to BRAF or MEK inhibitors in BRAF mutant cancers, Oncotarget, vol.2, pp.336-346, 2011.

C. M. Johannessen, A melanocyte lineage program confers resistance to MAP kinase pathway inhibition, Nature, vol.504, pp.138-142, 2013.

I. Arozarena and C. Wellbrock, Overcoming resistance to BRAF inhibitors, Ann. Transl. Med, vol.5, p.387, 2017.

J. Müller, Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma, Nat. Commun, vol.5, p.5712, 2014.

X. Kong, Cancer drug addiction is relayed by an ERK2-dependent phenotype switch, Nature, vol.550, pp.270-274, 2017.

J. Tsoi, Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress, Cancer Cell, vol.33, pp.890-904, 2018.

F. Rambow, Toward minimal residual disease-directed therapy in melanoma, Cell, vol.174, pp.843-855, 2018.

A. A. Rose, MAPK pathway inhibitors sensitize BRAF mutant melanoma to an antibody-drug conjugate targeting GPNMB, Clin. Cancer Res, vol.949, pp.6088-6098, 2016.

W. Hugo, Non-genomic and immune evolution of melanoma acquiring MAPKi resistance, Cell, vol.162, pp.1271-1285, 2015.

K. S. Hoek and C. R. Goding, Cancer stem cells versus phenotype-switching in melanoma, Pigment Cell Melanoma Res, vol.23, pp.746-759, 2010.

A. Verfaillie, Decoding the regulatory landscape of melanoma reveals TEADS as regulators of the invasive cell state, Nat. Commun, vol.6, p.6683, 2015.

S. M. Shaffer, Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance, Nature, vol.546, p.431, 2017.

S. Konermann, Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex, Nature, vol.517, pp.61422-61427, 2015.

M. S. Denison and S. R. Nagy, Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals, Annu. Rev. Pharmacol. Toxicol, vol.43, pp.309-334, 2003.

S. Diani-moore, S. Zhang, P. Ram, and A. B. Rifkind, Aryl hydrocarbon receptor activation by dioxin targets phosphoenolpyruvate carboxykinase (PEPCK) for ADP-ribosylation via 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly(ADP-ribose) polymerase (TiPARP), J. Biol. Chem, vol.288, pp.21514-21525, 2013.

P. M. Fernandez-salguero, D. M. Hilbert, S. Rudikoff, J. M. Ward, and F. J. Gonzalez, Aryl-hydrocarbon receptor-deficient mice are resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced toxicity, Toxicol. Appl. Pharmacol, vol.140, pp.173-179, 1996.

M. Veldhoen and J. H. Duarte, The aryl hydrocarbon receptor: fine-tuning the immune-response, Curr. Opin. Immunol, vol.22, pp.747-752, 2010.

M. S. Denison, A. Pandini, S. R. Nagy, E. P. Baldwin, and L. Bonati, Ligand binding and activation of the Ah receptor, Chem. Biol. Interact, vol.141, pp.3-24, 2002.

S. Safe, S. Lee, and U. Jin, Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target, Toxicol. Sci, vol.135, pp.1-16, 2013.

C. Zhang, RAF inhibitors that evade paradoxical MAPK pathway activation, Nature, vol.526, pp.583-586, 2015.

A. A. Rose, MAPK pathway inhibitors sensitize BRAF-mutant melanoma to an antibody-drug conjugate targeting GPNMB, Clin. Cancer Res, vol.22, pp.6088-6098, 2016.

M. P. Smith, Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy, Cancer Cell, vol.29, pp.270-284, 2016.

K. Toyofuku, The etiology of oculocutaneous albinism (OCA) type II: the pink protein modulates the processing and transport of tyrosinase, Pigment Cell Res, vol.15, pp.217-224, 2002.

F. and L. , BRAFi and AhR antagonists (Resveratrol and CH-223191). b Binding model of the antagonist Resveratrol (RSV) to the PAS B of AHR. RSV is predicted to bind to the ?-pocket. Free binding energy is reported in Supplementary Table 1. c RSV prevents CYP1A1 mRNA induction (48 h) by TCDD. 501Mel cells were pre-treated with 5 ?M RSV 2 h before 10 nM TCDD. d Gene expression profile of 501Mel cells exposed to vehicle, Therapeutic opportunity to limit BRAFi resistance. a Heatmap depicting the effects of different AhR ligands on OCA2 and CYP1A1 mRNA in 501Mel cells and pigmentation (48 h). Three groups: exo-and endo-gene ligands

, every 2 days) before treatment with Vem in order to establish Vem IC50 3 days after BRAFi treatment. Values, calculated with GraphPad PRISM (i), represent IC50 of Vem for control cells (without RSV pre-treatment) or after 1 week of RSV (j). % of BRAFi-persister cell values correspond to the percentage of residual cells following 3 days of Vem (5 ?M) treatment in comparison to melanoma cells without RSV treatment (k). l PDX tumor volumes 14 days after daily treatment with Dabrafenib (30 mg/kg) (n = 8) or in combination with RSV (40 mg/kg) (n = 7). m Number of days to reach max tumor volume (endpoint: >800 mm 3 ). Values correspond to the mean ± sem, Two pairs of BRAFi-sensitive (S) and -resistant (R) melanoma cells (501Mel and SKMel28) were pre-treated or not for 1 week with RSV (1 ?M

S. Park, Unrevealing the role of P-protein on melanosome biology and structure, using siRNA-mediated down regulation of OCA2, Mol. Cell Biochem, vol.403, pp.61-71, 2015.

J. Barretina, G. Caponigro, and N. Stransky, The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity, Nature, vol.483, pp.603-607, 2012.

S. Konermann, Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex, Nature, vol.517, pp.583-588, 2015.

K. Kemper, BRAF(V600E) kinase domain duplication identified in therapy-refractory melanoma patient-derived xenografts, Cell Rep, vol.16, pp.263-277, 2016.

C. Song, Recurrent tumor cell-intrinsic and -extrinsic alterations during MAPKi-induced melanoma regression and early adaptation, Cancer Discov, vol.7, pp.1248-1265, 2017.

I. Tirosh, Dissecting the multicelllular ecosystem of metastatic melanoma by single-cell RNA-seq, Science, vol.352, pp.189-196, 2016.

R. F. Casper, Resveratrol has antagonist activity on the aryl hydrocarbon receptor: implications for prevention of dioxin toxicity, Mol. Pharmacol, vol.56, pp.784-790, 1999.

Z. H. Chen, Resveratrol inhibits TCDD-induced expression of CYP1A1 and CYP1B1 and catechol estrogen-mediated oxidative DNA damage in cultured human mammary epithelial cells, Carcinogenesis, vol.25, pp.2005-2013, 2004.

D. Gilot, A non-coding function of TYRP1 mRNA promotes melanoma growth, Nat. Cell Biol, vol.19, p.1348, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01647130

E. A. Stanford, Role for the aryl hydrocarbon receptor and diverse ligands in oral squamous cell carcinoma migration and tumorigenesis, Mol. Cancer Res, vol.14, pp.696-706, 2016.

J. Brooks and S. Eltom, Malignant transformation of mammary epithelial cells by ectopic overexpression of the aryl hydrocarbon receptor, Curr. Cancer Drug. Targets, vol.11, pp.654-669, 2011.

C. A. Opitz, An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor, Nature, vol.478, pp.197-203, 2011.

J. Su, P. Lin, and H. Chang, Prognostic value of nuclear translocation of aryl hydrocarbon receptor for non-small cell lung cancer, Anticancer Res, vol.33, pp.3953-3961, 2013.

Á. C. Roman, J. M. Carvajal-gonzalez, J. M. Merino, S. Mulero-navarro, and P. M. Fernández-salguero, The aryl hydrocarbon receptor in the crossroad of signalling networks with therapeutic value, Pharmacol. Ther, vol.185, pp.50-63, 2018.

S. Narasimhan, Towards resolving the pro-and anti-tumor effects of the aryl hydrocarbon receptor, Int. J. Mol. Sci, vol.19, p.1388, 2018.

E. F. O'donnell, The aryl hydrocarbon receptor mediates leflunomideinduced growth inhibition of melanoma cells, PLoS One, vol.7, p.40926, 2012.

K. Hanson, The anti-rheumatic drug, leflunomide, synergizes with MEK inhibition to suppress melanoma growth, Oncotarget, vol.9, pp.3815-3829, 2018.

M. Contador-troca, Dioxin receptor regulates aldehyde dehydrogenase to block melanoma tumorigenesis and metastasis, Mol. Cancer, vol.14, p.148, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01264498

S. Mulero-navarro and P. Fernandez-salguero, New trends in aryl hydrocarbon receptor biology, Front. Cell Dev. Biol, vol.4, pp.1-14, 2016.

M. Werner-klein, Genetic alterations driving metastatic colony formation are acquired outside of the primary tumour in melanoma, Nat. Commun, vol.9, p.595, 2018.

Y. Liu, STAT3/p53 pathway activation disrupts IFN-?-induced dormancy in tumor-repopulating cells, J. Clin. Invest, vol.128, pp.1057-1073, 2018.

B. Jux, The aryl hydrocarbon receptor mediates UVB radiation-induced skin tanning, J. Invest. Dermatol, vol.131, pp.203-210, 2011.

C. M. Villano, K. A. Murphy, A. Akintobi, and L. White, A. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces matrix metalloproteinase (MMP) expression and invasion in A2058 melanoma cells, Toxicol. Appl. Pharmacol, vol.210, pp.212-224, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01311566

S. K. Kolluri, U. Jin, and S. Safe, Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target, Arch. Toxicol, vol.91, pp.2497-2513, 2017.

C. Gutiérrez-vázquez and F. J. Quintana, Regulation of the immune response by the aryl hydrocarbon receptor, Immunity, vol.48, pp.19-33, 2018.

P. Monteiro, D. Gilot, S. Langouet, and O. Fardel, Activation of the aryl hydrocarbon receptor by the calcium/calmodulin-dependent protein kinase kinase inhibitor 7-oxo-7H-benzimidazo, Drug Metab. Dispos, vol.36, pp.2556-2563, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00673111

H. Greulich and R. L. Erikson, An analysis of Mek1 signaling in cell proliferation and transformation, J. Biol. Chem, vol.273, pp.13280-13288, 1998.

G. M. Morris, AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility, J. Comput. Chem, vol.30, pp.2785-2791, 2009.

A. Pandini, M. S. Denison, Y. Song, A. A. Soshilov, and L. Bonati, Structural and functional characterization of the aryl hydrocarbon receptor ligand binding domain by homology modeling and mutational analysis, Biochemistry, vol.46, pp.696-708, 2007.

D. Gilot, RNAi-based screening identifies kinases interfering with dioxinmediated up-regulation of CYP1A1 activity, PLoS One, vol.6, p.18261, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00586840

C. T. Tiong, A novel prenylflavone restricts breast cancer cell growth through AhR-mediated destabilization of ER? protein, Carcinogenesis, vol.33, pp.1089-1097, 2012.

A. A. Soshilov and M. S. Denison, Ligand promiscuity of aryl hydrocarbon receptor agonists and antagonists revealed by site-directed mutagenesis, Mol. Cell Biol, vol.34, pp.1707-1719, 2014.

A. Bouafia, p53 requires the stress sensor USF1 to direct appropriate cell fate decision, PLoS Genet, vol.10, p.1004309, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01064584

R. Métivier, Cyclical DNA methylation of a transcriptionally active promoter, Nature, vol.452, p.45, 2008.

J. Anaya, OncoLnc: linking TCGA survival data to mRNAs, miRNAs, and lncRNAs, PeerJ Comput. Sci, vol.2, p.67, 2016.

N. Kovalova, R. Nault, R. Crawford, T. R. Zacharewski, and N. E. Kaminski, Comparative analysis of TCDD-induced AhR-mediated gene expression in human, mouse and rat primary B cells, Toxicol. Appl. Pharmacol, vol.316, pp.95-106, 2017.