P. Gripon, Infection of a human hepatoma cell line by hepatitis B virus, Proc Natl Acad Sci, vol.99, pp.15655-15660, 2002.

C. Aninat, Expression of cytochromes P450, conjugating enzymes and nuclear receptors in human hepatoma HepaRG cells, Drug Metab Dispos, vol.34, pp.75-83, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00702085

L. Vee, M. Noel, G. Jouan, E. Stieger, B. Fardel et al., Polarized expression of drug transporters in differentiated human hepatoma HepaRG cells, Toxicol In Vitro, vol.27, 1979.
URL : https://hal.archives-ouvertes.fr/hal-00866007

A. Guillouzo, The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics, Chem Biol Interact, vol.168, pp.66-73, 2007.

T. B. Andersson, K. P. Kanebratt, and J. G. Kenna, The HepaRG cell line: a unique in vitro tool for understanding drug metabolism and toxicology in human, Expert Opin Drug Metab Toxicol, vol.8, pp.909-920, 2012.

S. Antherieu, C. Chesne, R. Li, C. Guguen-guillouzo, and A. Guillouzo, Optimization of the HepaRG cell model for drug metabolism and toxicity studies, Toxicol In Vitro, vol.26, pp.1278-1285, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00866017

N. Nikolaou, C. J. Green, P. J. Gunn, L. Hodson, and J. W. Tomlinson, Optimizing human hepatocyte models for metabolic phenotype and function: effects of treatment with dimethyl sulfoxide (DMSO), Physiol Rep, vol.4, 2016.

R. Hoekstra, The HepaRG cell line is suitable for bioartificial liver application, Int J Biochem Cell Biol, vol.43, pp.1483-1489, 2011.

G. A. Nibourg, Liver progenitor cell line HepaRG differentiated in a bioartificial liver effectively supplies liver support to rats with acute liver failure, PLoS One, vol.7, 2012.

S. P. Rebelo, HepaRG microencapsulated spheroids in DMSO-free culture: novel culturing approaches for enhanced xenobiotic and biosynthetic metabolism, Arch Toxicol, vol.89, pp.1347-1358, 2015.

M. Van-wenum, Oxygen drives hepatocyte differentiation and phenotype stability in liver cell lines, J Cell Commun Signal, vol.12, pp.575-588, 2018.

F. Chen, S. M. Zamule, D. M. Coslo, T. Chen, and C. J. Omiecinski, The human constitutive androstane receptor promotes the differentiation and maturation of hepatic-like cells, Dev Biol, vol.384, pp.155-165, 2013.

V. A. Van-der-mark, Stable overexpression of the constitutive androstane receptor reduces the requirement for culture with dimethyl sulfoxide for high drug metabolism in HepaRG cells, Drug Metab Dispos, vol.45, p.72603, 2017.

K. B. Seamon, W. Padgett, and J. W. Daly, Forskolin: unique diterpene activator of adenylate cyclase in membranes and in intact cells, Proc Natl Acad Sci, vol.78, pp.3363-3367, 1981.

L. Sapio, The natural cAMP elevating compound forskolin in cancer therapy: Is it time?, J Cell Physiol, vol.232, pp.922-927, 2017.

T. Ranta, M. Knecht, J. M. Darbon, A. J. Baukal, and K. J. Catt, Induction of granulosa cell differentiation by forskolin: stimulation of adenosine 3?,5?-monophosphate production, progesterone synthesis, and luteinizing hormone receptor expression, Endocrinology, vol.114, pp.845-850, 1984.

B. Wice, D. Menton, H. Geuze, and A. L. Schwartz, Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro, Exp Cell Res, vol.186, pp.306-316, 1990.

D. Fu, Y. Wakabayashi, Y. Ido, J. Lippincott-schwartz, and I. M. Arias, Regulation of bile canalicular network formation and maintenance by AMP-activated protein kinase and LKB1, J Cell Sci, vol.123, pp.3294-3302, 2010.

M. M. Zegers and D. Hoekstra, Sphingolipid transport to the apical plasma membrane domain in human hepatoma cells is controlled by PKC and PKA activity: a correlation with cell polarity in HepG2 cells, J Cell Biol, vol.138, pp.307-321, 1997.

S. Ogawa, Three-dimensional culture and cAMP signaling promote the maturation of human pluripotent stem cell-derived hepatocytes, Development, vol.140, pp.3285-3296, 2013.

M. G. Burbank, Early alterations of bile canaliculi dynamics and the Rho kinase/myosin light chain kinase pathway are characteristics of drug-induced intrahepatic cholestasis, Drug Metab Dispos, vol.44, pp.1780-1793, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398437

C. A. Schneider, W. S. Rasband, K. W. Eliceiri, and . Nih, Image to ImageJ: 25 years of image analysis, Nat Methods, vol.9, pp.671-675, 2012.

L. Vee, M. Lecureur, V. Stieger, B. Fardel, and O. , Regulation of drug transporter expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis factor-alpha or interleukin-6, Drug Metab Dispos, vol.37, pp.685-693, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00673249

V. Lecureur, ERK-dependent induction of TNFalpha expression by the environmental contaminant benzo(a)pyrene in primary human macrophages, FEBS Lett, vol.579, 1904.

E. Jigorel, M. Le-vee, C. Boursier-neyret, M. Bertrand, and O. Fardel, Functional expression of sinusoidal drug transporters in primary human and rat hepatocytes, Drug Metab Dispos, vol.33, pp.1418-1422, 2005.

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal Biochem, vol.72, pp.248-254, 1976.

L. Payen, A. Courtois, J. P. Campion, A. Guillouzo, and O. Fardel, Characterization and inhibition by a wide range of xenobiotics of organic anion excretion by primary human hepatocytes, Biochem Pharmacol, vol.60, pp.1967-1975, 2000.

H. Poppe, Cyclic nucleotide analogs as probes of signaling pathways, Nat Methods, vol.5, pp.277-278, 2008.

J. M. Enserink, A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK, Nat Cell Biol, vol.4, pp.901-906, 2002.

D. M. Essayan, Cyclic nucleotide phosphodiesterases, J Allergy Clin Immunol, vol.108, pp.671-680, 2001.

X. Ding and J. L. Staudinger, Induction of drug metabolism by forskolin: the role of the pregnane X receptor and the protein kinase a signal transduction pathway, J Pharmacol Exp Ther, vol.312, pp.849-856, 2005.

W. R. Howard, J. A. Pospisil, E. Njolito, and D. J. Noonan, Catabolites of cholesterol synthesis pathways and forskolin as activators of the farnesoid X-activated nuclear receptor, Toxicol Appl Pharmacol, vol.163, pp.195-202, 2000.

J. W. Jonker, C. Liddle, and M. Downes, FXR and PXR: potential therapeutic targets in cholestasis, J Steroid Biochem Mol Biol, vol.130, pp.147-158, 2012.

B. Williamson, M. Lorbeer, M. D. Mitchell, T. G. Brayman, and R. J. Riley, Evaluation of a novel PXR-knockout in HepaRG TM cells, Pharmacol Res Perspect, vol.4, 2016.

C. Decaens, M. Durand, B. Grosse, and D. Cassio, Which in vitro models could be best used to study hepatocyte polarity?, Biol Cell, vol.100, pp.387-398, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00270868

J. M. Lehmann, The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions, J Clin Invest, vol.102, pp.1016-1023, 1998.

L. Iacovelli, Thyrotropin activates mitogen-activated protein kinase pathway in FRTL-5 by a cAMP-dependent protein kinase A-independent mechanism, Mol Pharmacol, vol.60, pp.924-933, 2001.

J. K. Ivins, M. K. Parry, and D. A. Long, A novel cAMP-dependent pathway activates neuronal integrin function in retinal neurons, J Neurosci, vol.24, pp.1212-1216, 2004.

R. Scientific, , vol.8, 2018.

S. Gambaryan, Regulation of aldosterone production from zona glomerulosa cells by ANG II and cAMP: evidence for PKAindependent activation of CaMK by cAMP, Am J Physiol Endocrinol Metab, vol.290, pp.423-433, 2006.

A. C. Emery and L. E. Eiden, Signaling through the neuropeptide GPCR PAC 1 induces neuritogenesis via a single linear cAMP-and ERK-dependent pathway using a novel cAMP sensor, FASEB J, vol.26, pp.3199-3211, 2012.

M. Biel and S. Michalakis, Cyclic nucleotide-gated channels, Handb Exp Pharmacol, pp.111-136, 2009.

R. F. Schindler and T. Brand, The Popeye domain containing protein family-A novel class of cAMP effectors with important functions in multiple tissues, Prog Biophys Mol Biol, vol.120, pp.28-36, 2016.

A. C. Emery, M. V. Eiden, and L. E. Eiden, Separate cyclic AMP sensors for neuritogenesis, growth arrest, and survival of neuroendocrine cells, J Biol Chem, vol.289, pp.10126-10139, 2014.

W. Xie, Humanized xenobiotic response in mice expressing nuclear receptor SXR, Nature, vol.406, pp.435-439, 2000.

J. L. Staudinger, The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity, Proc Natl Acad Sci, vol.98, pp.3369-3374, 2001.

Y. Avior, Microbial-derived lithocholic acid and vitamin K 2 drive the metabolic maturation of pluripotent stem cells-derived and fetal hepatocytes, Hepatology, vol.62, pp.265-278, 2015.

J. Hakkola, J. Rysa, and J. Hukkanen, Regulation of hepatic energy metabolism by the nuclear receptor PXR, Biochim Biophys Acta, vol.1859, pp.1072-1082, 2016.

P. O. Oladimeji and T. Chen, PXR: More than just a master xenobiotic receptor, Mol Pharmacol, vol.93, pp.119-127, 2018.

A. Moreau, M. J. Vilarem, P. Maurel, and J. M. Pascussi, Xenoreceptors CAR and PXR activation and consequences on lipid metabolism, glucose homeostasis, and inflammatory response, Mol Pharm, vol.5, pp.35-41, 2008.