G. S. Ashcroft, M. Jeong, J. J. Ashworth, M. Hardman, J. W. Moutsopoulos et al., TNF? is a therapeutic target for impaired cutaneous wound healing, Wound Repair Regen, vol.20, pp.38-49, 2012.

S. Balaji, S. G. Keswani, and T. M. Crombleholme, The role of mesenchymal stem cells in the regenerative wound healing phenotype, Adv Wound Care, vol.1, pp.159-165, 2012.

S. Balaji, M. Lesaint, S. S. Bhattacharya, C. Moles, Y. Dhamija et al., Adenoviral mediated gene transfer of IGF-1 enhances wound healing and induces angiogenesis, J Surg Res, vol.190, pp.367-377, 2014.

S. Balaji, C. L. Watson, R. Ranjan, A. King, P. L. Bollyky et al., Chemokine involvement in fetal and adult wound healing, Adv Wound Care, vol.4, pp.660-672, 2015.

C. Bamberger, . Schärer, M. Antsiferova, B. Tychsen, S. Pankow et al., Activin controls skin morphogenesis and wound repair predominantly via stromal cells and in a concentration-dependent manner via keratinocytes, Am J Pathol, vol.167, pp.733-747, 2005.

R. M. Benson, L. M. Minter, B. A. Osborne, and E. V. Granowitz, , 2003.

, Hyperbaric oxygen inhibits stimulus-induced proinflammatory cytokine synthesis by human blood-derived monocyte-macrophages, Clin. Exp. Immunol, vol.134, pp.57-62

A. K. Blakney, M. D. Swartzlander, and S. J. Bryant, The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels, J. Biomed. Mater. Res. A, vol.100, pp.1375-1386, 2012.

I. R. Boldogh and L. A. Pon, Interactions of mitochondria with the actin cytoskeleton, Biochimica et Biophysica Acta, vol.1763, pp.450-462, 2006.

B. Sk and A. J. , Wound macrophages as key regulators of repair, The American Journal of Pathology, vol.178, pp.19-25, 2011.

L. Brizhik, L. Ferroni, C. Gardin, and E. Fermi, On the mechanisms of wound healing by magnetic therapy: the working principle of therapeutic magnetic resonance, International Journal of Biophysics, vol.6, pp.27-43, 2016.

L. Campbell, C. R. Saville, P. J. Murray, S. M. Cruickshank, and M. J. Hardman, Local Arginase 1 Activity Is Required for Cutaneous Wound Healing, J Invest Dermatol, vol.133, issue.10, pp.2461-2470, 2013.

J. L. Cash, M. D. Bass, J. Campbell, M. Barnes, P. Kubes et al., Resolution mediator chemerin15 reprograms the wound microenvironment to promote repair and reduce scarring, Curr Biol, vol.24, pp.1406-1414, 2014.

B. H. Cha, S. R. Shin, J. Leijten, Y. C. Li, S. Singh et al., , 2017.

, Integrin-mediated interactions control macrophage polarization in 3D hydrogels, Adv. Healthc. Mater, vol.6, pp.1-12

J. Chaqour, S. Lee, A. Ravichandra, and B. Chaqour, Abscisic acid: an antiangiogenic phytohormone that modulates the phenotypical plasticity of endothelial cells and macrophages, J Cell Sci, 2018.

W. Chen, S. Chen, W. Chen, X. C. Li, R. M. Ghobrial et al., , 2018.

, RhoA/ROCK inhibitors for the ability to prevent chronic rejection of mouse cardiac allografts, Transpl Immunol, issue.18, pp.30029-30036

W. Chen, R. M. Ghobrial, X. C. Li, and M. Kloc, Inhibition of RhoA and mTORC2/Rictor by Fingolimod (FTY720) induces p21-activated kinase 1, PAK-1 and amplifies podosomes in mouse peritoneal macrophages, Immunobiology, issue.18, pp.30046-30055, 2018.

W. Chen, X. C. Li, J. Z. Kubiak, R. M. Ghobrial, and M. Kloc, Rho-specific Guanine nucleotide exchange factors (Rho-GEFs) inhibition affects macrophage phenotype and disrupts Golgi complex, Int. J. Biochem. Cell Biol, vol.93, pp.12-24, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01647190

W. Chen, H. Sandoval, J. Z. Kubiak, X. C. Li, R. M. Ghobrial et al., The phenotype of peritoneal mouse macrophages depends on the mitochondria and ATP/ADP homeostasis, Cell Immunol, vol.324, pp.1-7, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01730201

W. Chen, W. Chen, X. C. Li, R. M. Ghobrial, and M. Kloc, Coinhibition of mTORC1/mTORC2 and RhoA /ROCK pathways prevents chronic rejection of rat cardiac allografts, Transplantation Reports, 2018.

L. Chen, E. E. Tredget, P. Y. Wu, and Y. Wu, Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing, PLoS ONE, vol.3, p.1886, 2008.

A. Chiarini, G. Freddi, D. Liu, U. Armato, D. Prà et al., Biocompatible Silk NoilBased Three-Dimensional Carded-Needled Nonwoven Scaffolds Guide the Engineering of Novel Skin Connective Tissue, Tissue Eng Part A, vol.22, pp.1047-60, 2016.

B. Cunniff, A. J. Mckenzie, N. H. Heintz, and A. K. Howe, AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion, Mol Biol Cell, vol.27, pp.2662-2674, 2016.

J. M. Daley, S. K. Brancato, A. A. Thomay, J. S. Reichner, and J. E. Albina, The phenotype of murine wound macrophages, J Leukoc Biol, vol.87, pp.59-67, 2010.

L. C. Davies, S. J. Jenkins, J. E. Allen, and P. R. Taylor, Tissue-resident macrophages Nature Immunology14, pp.986-995, 2013.

. Dorsett-martin and . Wa, Rat models of skin wound healing: a review, Wound Repair Regen, vol.12, p.591, 2004.

K. Y. Deleon-pennell, A. J. Mouton, O. K. Ero, Y. Ma, R. P. Iyer et al., , 2018.

, LXR/RXR signaling and neutrophil phenotype following myocardial infarction classify sex differences in remodeling, Basic Res Cardiol, vol.113, issue.5, p.40, 2018.

I. A. Demyanenko, V. V. Zakharova, O. P. Ilyinskaya, T. V. Vasilieva, A. V. Fedorov et al., , 2017.

. Mitochondria-targeted, Antioxidant SkQ1 Improves Dermal Wound Healing in Genetically Diabetic Mice, Oxid Med Cell Longev, p.6408278, 2017.

R. Dings, M. C. Miller, R. J. Griffin, and K. H. Mayo, Galectins as Molecular Targets for Therapeutic Intervention, Int J Mol Sci, vol.19, p.905, 2018.

J. S. Duffield, S. J. Forbes, C. M. Constandinou, S. Clay, M. Partolina et al., Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair, J Clin Invest, vol.115, pp.56-65, 2005.

S. A. Eming, P. Martin, and M. Tomic-canic, Wound repair and regeneration: Mechanisms, signaling, and translation, Sci Transl Med, vol.6, issue.265, pp.265-271, 2014.

S. Epelman, K. J. Lavine, and G. J. Randolph, Origin and functions of tissue macrophages, Immunity, vol.41, pp.21-35, 2014.

H. Escuin-ordinas, S. Li, M. W. Xie, L. Sun, W. Hugo et al., Cutaneous wound healing through paradoxical MAPK activation by BRAF inhibitors, Nat Commun, vol.7, p.12348, 2016.

Y. Feng, A. J. Sanders, F. Ruge, C. Morris, K. G. Harding et al., Expression of the SOCS family in human chronic wound tissues: Potential implications for SOCS in chronic wound healing, Int J Mol Med, vol.38, pp.1349-1358, 2016.

R. A. Ferrer, A. Saalbach, M. Grünwedel, N. Lohmann, I. Forstreuter et al., Dermal Fibroblasts Promote Alternative Macrophage Activation Improving Impaired Wound Healing, J Invest Dermatol, vol.137, pp.941-950, 2017.

M. Fumagalli, T. Musso, W. Vermi, S. Scutera, R. Daniele et al., Imbalance between activin A and follistatin drives postburn hypertrophic scar formation in human skin, Exp Dermatol, vol.16, pp.600-610, 2007.

R. G. Frykberg and J. Banks, Challenges in the treatment of chronic wounds, Adv Wound Care, vol.4, pp.560-82, 2015.

S. Galván-peña and L. A. O'neill, Metabolic reprograming in macrophage polarization, Front Immunol, vol.5, pp.420-426, 2014.

J. A. Gindele, S. Mang, N. Pairet, I. Christ, F. Gantner et al., Opposing effects of in vitro differentiated macrophages sub-type on epithelial wound healing, PLoS One, vol.12, p.184386, 2017.

F. Ginhoux, M. Greter, M. Leboeuf, S. Nandi, P. See et al., Fate mapping analysis reveals that adult microglia derive from primitive macrophages, Science, vol.330, pp.841-845, 2010.

E. Gomez-perdiguero, K. Klapproth, C. Schulz, K. Busch, E. Azzoni et al., Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors, Nature, vol.518, pp.547-551, 2015.

B. S. Gordon, A. A. Kazi, C. S. Coleman, M. D. Dennis, V. Chau et al., RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells, Cell Signal, vol.26, pp.461-467, 2014.

I. Goren, E. Müller, D. Schiefelbein, U. Christen, J. Pfeilschifter et al., Systemic anti-TNFalpha treatment restores diabetes-impaired skin repair in ob/ob mice by inactivation of macrophages, J. Invest. Dermatol, vol.127, pp.2259-2267, 2007.

P. Gulhati, K. A. Bowen, J. Liu, P. D. Stevens, P. G. Rychahou et al., mTORC1 and mTORC2 regulate EMT, motility and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways, Cancer Res, vol.71, pp.3246-3256, 2011.

G. Dipietro and L. A. , Factors Affecting Wound Healing, Dent Res, vol.89, pp.219-229, 2010.

Y. Guo, C. Lin, P. Xu, S. Wu, X. Fu et al., AGEs Induced Autophagy Impairs Cutaneous Wound Healing via Stimulating Macrophage Polarization to M1 in Diabetes.Sci Rep, vol.6, p.36416, 2016.

C. J. Hall, R. H. Boyle, J. W. Astin, M. V. Flores, S. H. Oehlers et al., Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating beta-oxidation dependent mitochondrial ROS production, Cell. Metab, vol.18, pp.265-278, 2013.

D. Hashimoto, A. Chow, C. Noizat, P. Teo, M. B. Beasley et al., Tissue resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes Immunity Immunity, vol.8, pp.792-804, 2013.

X. T. He, X. Li, Y. Yin, R. X. Wu, X. Y. Xu et al., The effects of conditioned media generated by polarized macrophages on the cellular behaviours of bone marrow mesenchymal stem cells, J Cell Mol Med, vol.22, pp.1302-1315, 2018.

G. Hoeffel, Y. Wang, M. Greter, P. See, P. Teo et al., Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages, J. Exp. Med, vol.209, pp.1167-1181, 2012.

S. C. Huang, A. M. Smith, B. Everts, M. Colonna, E. L. Pearce et al., Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation, Immunity, vol.45, pp.817-830, 2016.
DOI : 10.1016/j.immuni.2016.09.016

URL : http://europepmc.org/articles/pmc5535820?pdf=render

Y. Ishida, J. L. Gao, and P. M. Murphy, Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function, J Immunol, vol.180, pp.569-579, 2008.

N. Jetten, N. Roumans, M. J. Gijbels, A. Romano, M. J. Post et al., Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses, PLoS ONE, vol.9, p.102994, 2014.

A. King, S. Balaji, L. D. Le, T. M. Crombleholme, and S. G. Keswani, Regenerative Wound Healing: The Role of Interleukin-10, Adv Wound Care, vol.3, pp.315-323, 2014.

P. Krzyszczyk, R. Schloss, A. Palmer, and F. Berthiaume, The role of macrophages in the acute and chronic wound healing and interventions to promote pro-wound healing phenotypes, Front. Physiol, vol.9, p.419, 2018.

N. X. Landén, D. Li, and M. Ståhle, Transition from inflammation to proliferation: a critical step during wound healing, Cell Mol Life Sci, vol.73, pp.3861-3885, 2016.

Y. Liu, W. Chen, C. Wu, L. J. Minze, J. Z. Kubiak et al., , 2017.

, Macrophage/monocyte-specific deletion of RhoA down-regulates fractalkine receptor and inhibits chronic rejection of mouse cardiac allografts, J Heart Lung Transpl, vol.36, pp.340-354

Y. Liu, M. Kloc, and X. C. Li, Macrophages as effectors of Acute and Chronic allograft injury, Current Transplantation Reports, vol.3, pp.303-312, 2016.

Y. Liu, W. Chen, L. J. Minze, J. Z. Kubiak, X. C. Li et al., Dissonant response of M0/M2 and M1 bone marrow derived macrophages to RhoA pathway interference, Cell Tissue Res, vol.366, pp.707-720, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439380

Y. Liu, J. Z. Kubiak, X. C. Li, R. M. Ghobrial, and M. Kloc, Macrophages and RhoA Pathway in Transplanted Organs, Results Probl Cell Differ, vol.62, pp.365-376, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01518006

Y. Liu, L. J. Minze, L. Mumma, X. C. Li, R. M. Ghobrial et al., Mouse macrophage polarity and ROCK1 activity depend on RhoA and non-apoptotic Caspase 3, Exp Cell Res, vol.341, pp.225-236, 2016.

Y. Liu, N. Tejpal, J. You, X. C. Li, R. M. Ghobrial et al., ROCK inhibition impedes macrophage polarity and functions, Cell Immunol, vol.300, pp.54-62, 2016.

S. Linder and C. Wiesner, Tools of the trade: podosomes as multipurpose organelles of monocytic cells, Cell Mol Life Sci, vol.72, pp.121-135, 2015.

D. Lu, B. Chen, Z. Liang, W. Deng, Y. Jiang et al., Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial, Diabetes Res. Clin. Pract, vol.92, pp.26-36, 2011.

D. H. Madsen, D. Leonard, A. Masedunskas, A. Moyer, H. J. Jurgensen et al., M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway, J. Cell Biol, vol.202, pp.951-966, 2013.

M. Magatti, E. Vertua, D. Munari, S. Caro, M. Caruso et al., Human amnion favours tissue repair by inducing the M1-to-M2 switch and enhancing M2 macrophage features, J Tissue Eng Regen Med, vol.11, pp.2895-2911, 2017.

F. Y. Mcwhorter, T. Wang, P. Nguyen, T. Chung, and W. F. Liu, Modulation of macrophage phenotype by cell shape, Proc. Natl. Acad. Sci. U.S.A, vol.110, pp.17253-17258, 2013.

M. M. Mehta, S. E. Weinberg, and N. S. Chandel, Mitochondrial control of immunity: beyond ATP, Nat Rev Immunol, vol.3, 2017.

C. A. Meschiari, M. Jung, R. P. Iyer, A. Yabluchanskiy, H. Toba et al., Macrophage overexpression of matrix metalloproteinase-9 in aged mice improves diastolic physiology and cardiac wound healing following myocardial infarction, Am J Physiol Heart Circ Physiol, vol.13, p.4532017, 2017.

E. L. Mills and L. A. Neill, Reprogramming mitochondrial metabolismin macrophages as an anti-inflammatory signal, Eur. J. Immunology, vol.46, pp.13-21, 2016.

A. L. Moore, C. D. Marshall, L. A. Barnes, M. P. Murphy, R. C. Ransom et al., , 2018.

, Scarless wound healing: Transitioning from fetal research to regenerative healing

, Wiley Interdiscip Rev Dev Biol, vol.2, issue.2, 2009.

M. Munder, F. Mollinedo, J. Calafat, J. Canchado, C. Gil-lamaignere et al., , 2005.

, Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity, Blood, vol.105, pp.2549-2556

M. Nahrendorf, F. K. Swirski, E. Aikawa, L. Stangenberg, T. Wurdinger et al., The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions, J Exp Med, vol.204, pp.3037-304, 2007.

R. Nunan, K. G. Harding, and P. Martin, Clinical challenges of chronic wounds: searching for an optimal animal model to recapitulate their complexity, Dis Model Mech, vol.7, pp.1205-1213, 2014.

K. Nuutila, A. Siltanen, M. Peura, J. Bizik, I. Kaartinen et al., Human skin transcriptome during superficial cutaneous wound healing, Wound Repair Regen, vol.20, pp.830-839, 2012.

K. Nuutila, S. Katayama, J. Vuola, and E. Kankuri, Human wound-healing research: issues and perspectives for studies using wide-scale analytic platforms, Adv Wound Care, vol.3, pp.264-271, 2014.

N. L. Occleston, H. G. Laverty, S. O'kane, and M. J. Ferguson, Prevention and reduction of scarring in the skin by Transforming Growth Factor beta 3 (TGFbeta3): from laboratory discovery to clinical pharmaceutical, Biomater Sci Polym Ed, vol.19, pp.1047-1063, 2008.

S. H. Orkin and L. I. Zon, Hematopoiesis: an evolving paradigm for stem cell biology, Cell, vol.132, pp.631-644, 2008.

M. Pakyari, A. Farrokhi, M. Khosravi-maharlooei, and A. Ghahary, Critical role of transforming growth factor beta in different phases of wound healing, Adv Wound Care, vol.2, pp.215-224, 2013.

V. R. Parasa, J. R. Muvva, J. F. Rose, C. Braian, S. Brighenti et al., Inhibition of Tissue Matrix Metalloproteinases Interferes with Mycobacterium tuberculosisInduced Granuloma Formation and Reduces Bacterial Load in a, Human Lung Tissue Model. Front Microbiol, vol.8, p.2370, 2017.

M. Quiros, H. Nishio, P. A. Neumann, D. Siuda, J. C. Brazil et al., Macrophagederived IL-10 mediates mucosal repair by epithelial WISP-1 signaling, J Clin Invest, vol.127, pp.3510-3520, 2017.

G. Raes, R. Van-den-bergh, D. Baetselier, P. Ghassabeh, G. H. Scotton et al., Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells, J Immunol, vol.174, pp.6561-6562, 2005.

J. M. Rhett, G. S. Ghatnekar, J. A. Palatinus, M. O'quinn, M. J. Yost et al., , 2008.

, Novel therapies for scar reduction and regenerative healing of skin wounds, Trends Biotechnol, vol.26, pp.173-180

L. Rittié, D. L. Sachs, J. S. Orringer, J. J. Voorhees, and G. J. Fisher, Eccrine sweat glands are major contributors to reepithelialization of human wounds, Am J Pathol, vol.182, pp.163-170, 2013.

J. C. Rodríguez-prados, P. G. Través, J. Cuenca, D. Rico, J. Aragonés et al., Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation, J Immunol, vol.185, pp.605-614, 2010.

T. Roch, O. Akymenko, A. Krüger, F. Jung, N. Ma et al., Expression pattern analysis and activity determination of matrix metalloproteinase derived from human macrophage subsets, Clin Hemorheol Microcirc, vol.58, pp.147-58, 2014.

I. M. Samokhvalov, Deconvoluting the ontogeny of hematopoietic stem cells, Cell. Mol. Life Sci, vol.71, pp.957-978, 2014.

E. Seki, S. De-minicis, S. Inokuchi, K. Taura, K. Miyai et al., CCR2 promotes hepatic fibrosis in mice, Hepatology, vol.50, pp.185-197, 2009.

M. B. Serra, W. A. Barroso, D. Silva, N. N. Silva, S. N. Borges et al., From inflammation to current and alternative therapies involved in wound healing, Int J Inflam, p.3406215, 2017.

M. H. Schuler, A. Lewandowska, G. D. Caprio, W. Skillern, S. Upadhyayula et al., Miro1-mediated mitochondrial positioning shapes intracellular energy gradients required for cell migration, Mol Biol Cell, vol.282, pp.159-2169, 2017.

C. Schulz, G. Perdiguero, E. Chorro, L. Szabo-rogers, H. Cagnard et al., , 2012.

, A lineage of myeloid cells independent of Myb and hematopoietic stem cells, Science, vol.336, pp.86-90

Y. Shi, B. Shu, R. Yang, Y. Xu, B. Xing et al., Wnt and Notch signaling pathway involved in wound healing by targeting c-Myc and Hes1 separately, Stem Cell Res Ther, vol.6, issue.1, p.120, 2015.

J. D. Short, K. Downs, S. Tavakoli, and R. Asmis, Protein Thiol Redox Signaling in Monocytes and Macrophages, Antioxid Redox Signal, vol.25, pp.816-835, 2016.

Q. Song, Y. Xie, Q. Gou, X. Guo, Q. Yao et al., , 2017.

, JAK/STAT3 and Smad3 activities are required for the wound healing properties of Periplaneta americana extracts, Int J Mol Med, vol.40, pp.465-473

Q. Sun, S. Guo, C. C. Wang, X. Sun, D. Wang et al., Cross-talk between TGF-?/Smad pathway and Wnt/?-catenin pathway in pathological scar formation, Int J Clin Exp Pathol, vol.8, issue.6, pp.7631-7640, 2015.

M. Takeo, W. Lee, and M. Ito, Wound Healing and Skin Regeneration, Cold Spring Harb Perspect Med, vol.5, issue.1, p.23267, 2015.

D. Vats, L. Mukundan, J. I. Odegaard, L. Zhang, K. L. Smith et al., Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation, Cell Metab, vol.4, pp.13-24, 2006.

Q. Wang, G. Zhu, X. Cao, J. Dong, F. Song et al., Blocking Age-Rage signaling improved functional disorders of macrophages in diabetic wound, J Diabetes Res, p.1428537, 2017.

T. A. Wilgus, A. M. Ferreira, T. A. Oberyszyn, V. K. Bergdall, and L. A. Dipietro, Regulation of scar formation by vascular endothelial growth factor, Lab Invest, vol.88, pp.579-590, 2008.

J. Wosik, W. Chen, K. Qin, R. M. Ghobrial, J. Z. Kubiak et al., Magnetic field changes macrophage phenotype, Biophysical J, vol.114, pp.2001-2013, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01780368

C. Wu, Y. Zhao, X. Z. Fan, Y. Kloc, M. Liu et al., , 2016.

, Graft infiltrating macrophages adopt a M2 phenotype and are inhibited by P2x7 receptor antagonist in chronic rejection A, J Transplant, vol.16, pp.2563-2673

W. Ta and K. M. Vannella, Macrophages in tissue repair, regeneration, and fibrosis, Immunity, vol.44, pp.450-462, 2016.

C. J. Yeh, C. C. Chen, Y. L. Leu, M. W. Lin, M. M. Chiu et al., The effects of artocarpin on wound healing: in vitro and in vivo studies, 2017.

D. J. Yu, X. J. Wang, Y. F. Shi, C. Y. Jiang, R. Z. Zhao et al., Macrophages are targets of retinoic acid signaling during the wound-healing process after thulium laser resection of the prostate, Oncotarget, vol.8, pp.71996-72007, 2017.

R. Yuan, S. Geng, K. Chen, N. Diao, H. W. Chu et al., Low-grade inflammatory polarization of monocytes impairs wound healing, J Pathol, vol.238, pp.571-583, 2016.

D. Zaiss, W. C. Gause, L. C. Osborne, and D. Artis, Emerging functions of amphiregulin in orchestrating immunity, inflammation and tissue repair, Immunity, vol.42, pp.216-226, 2015.

Q. Z. Zhang, W. R. Su, S. H. Shi, P. Wilder-smith, A. P. Xiang et al., Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing, Stem Cells, vol.28, pp.1856-1868, 2010.

Z. Zhu, J. Ding, and E. E. Tredget, The molecular basis of hypertrophic scars, Burns Trauma, vol.4, p.2, 2016.

A. Zuloff-shani, E. Kachel, O. Frenkel, A. Orenstein, E. Shinar et al., Macrophage suspensions prepared from a blood unit for treatment of refractory human ulcers, Transfus. Apher. Sci, vol.30, pp.163-167, 2004.

(. Activin and . Bamberger, , 2005.

A. and A. (. Chiarini, , 2016.

. Landen, ATF3, Activating, vol.3, 2016.

C. and C. Balaji, , 2015.

. Balaji, CSF1R, Macrophage colony-stimulating factor 1 receptor, 2015.

C. and F. Balaji, , 2015.

F. and F. Growth-factor-(eming, , 2014.

, Gal-3, Galectin, vol.3, 2018.

G. R. and G. Landen, , 2016.

. Balaji, , 2014.

I. L. and I. (. Chiarini, , 2014.

. Serra, IRF, Interferon regulatory factor, 2017.

L. Liver-x-receptor-;-deleon-pennell,

. Nos-;-landen, Nitric oxide synthase, 2016.

. Eming, Platelet-derived growth factor, 2014.

. Feng, Suppressor of cytokine signaling, SOCS, 2016.

. Zhou, Signal transducer and activator of transcription 1-3 (Song et al, pp.1-3, 2016.

. Pakyari, TGF, Transforming growth factor, 2013.

T. and T. Necrosis-factor-?-(ashcroft, , 2012.

V. and V. Endothelial-growth-factor?-;-eming, , 2008.

W. Wnt and . Shi, , 2015.