J. Fontmorin, F. Fourcade, and F. Geneste, Direct electrochemical oxidation of a pesticide 2,4-dichlorophenoxyacetic acid, at the surface of a graphite felt electrode: Biodegradability improvement, Comptes Rendus Chimie, vol.18, pp.32-38, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01026437

H. Jiang, Y. Sun, and J. Feng, Heterogeneous electro-Fenton oxidation of azo dye methyl orange catalyzed by magnetic Fe3O4 nanoparticles. Water science and technology, vol.74, pp.1116-1126, 2016.
DOI : 10.2166/wst.2016.300

A. Abou-dalle, L. Domergue, and F. Fourcade, Efficiency of DMSO as hydroxyl radical probe in an Electrochemical Advanced Oxidation Process-Reactive oxygen species monitoring and impact of the current density, Electrochimica Acta, vol.246, pp.1-8, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578540

V. Poza-nogueiras, E. Rosales, M. Pazoz, and M. A. Sanroman, Current advances and trends in electro-Fenton process using heterogeneous catalysts-A review, Chemosphere, vol.201, pp.399-416, 2018.

M. Stieber, A. Putschew, and M. Jekel, Treatment of Pharmaceuticals and Diagnostic Agents Using Zero-Valent Iron-Kinetic Studies and Assessment of Transformation Products Assay, Environ. Sci. Technol, vol.11, pp.4944-4950, 2011.

L. Xu and J. Wang, A heterogeneous Fenton-like system with nanoparticulate zerovalent iron for removal of 4-chloro-3-methyl phenol, Journal of Hazardous Materials, vol.186, pp.256-264, 2011.

S. Papic, N. Koprivanac, and B. A. Loncaric, Advanced Oxidation Processes in Azo Dye Wastewater Treatment, Water Environment Research, vol.78, pp.572-579, 2006.

S. Navalon, M. Alvaro, and H. Garcia, Heterogeneous Fenton catalysts based on clays, silicas and zeolites, Applied Catalysis B: Environmental, vol.99, pp.1-26, 2010.

J. Deng, J. Jiang, and Y. Zhang, FeVO4 as a highly active heterogeneous Fentonlike catalyst towards the degradation of Orange II, Applied Catalysis B: Environmental, vol.84, pp.468-473, 2008.

W. Luo, L. Zhu, and N. Wang, Efficient Removal of Organic Pollutants with Magnetic Nanoscaled BiFeO3 as a Reusable Heterogeneous Fenton-Like Catalyst

, Environ. Sci. Technol, vol.44, pp.1786-1791, 2010.

Z. R. Lin, L. Zhao, and Y. H. Dong, Quantitative characterization of hydroxyl radical 16 generation in a goethite-catalyzed Fenton-like reaction, Chemosphere, vol.141, pp.7-12, 2015.

P. V. Nidheesh, R. Gandhimathi, and S. Velmathi, Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution, RSC Advances, vol.4, pp.5698-5708, 2014.

F. Araujo, L. Yokoyama, and L. Teixeira, Heterogeneous Fenton process using the mineral hematite for the discolouration of a reactive dye solution, Brazilian Journal of Chemical Engineering, vol.28, issue.4, pp.605-616, 2011.

G. D. Fang, D. M. Zhou, and D. D. Dionysiou, Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: Demonstration in the degradation of 2chlorobiphenyl, Journal of Hazardous Materials, vol.1, pp.68-75, 2013.

I. Ouiriemmi, A. Karrab, and N. Oturan, Heterogeneous electro-Fenton using natural pyrite as solid catalyst for oxidative degradation of vanillic acid, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581878

,

E. Expósito, C. M. Sánchez-sánchez, and V. Montiel, Mineral Iron Oxides as Iron Source in Electro-Fenton and Photoelectro-Fenton Mineralization Processes, Journal of the electrochemical society, vol.8, pp.116-122, 1154.

P. V. Nidheesh, Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review, RSC Adv, vol.15, pp.40552-40577, 2015.

R. Andreozzi, V. Caprio, and R. Marotta, Oxidation of 3,4-dihydroxybenzoic acid by means of hydrogen peroxide in aqueous goethite slurry, Water Research, vol.36, pp.2761-2768, 2002.

B. Hammouda, S. Fourcade, F. Assadi, and A. , Effective heterogeneous electroFenton process for the degradation of a malodorous compound, indole, using iron loaded alginate beads as a areusable catalyst, Applied Catalysis B: Environmental, vol.1182, pp.47-58, 2016.

V. Poza-nogueiras, M. Arellano, and E. Rosales, Heterogeneous electro-Fenton as plausible technology for the degradation of imidazolinium-based ionic liquids, Chemosphere, vol.1199, pp.68-75, 2018.

S. Rezgui, A. Amrane, and F. Fourcade, Electro-Fenton catalyzed with magnetic chitosan beads for the removal of Chlordimeform insecticide, Applied Catalysis B: Environmental, vol.1226, pp.346-359, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01695566

A. Dhakshinamoorthy, S. Navalon, and M. Alvaro, Metal Nanoparticles as Heterogeneous Fenton Catalysts, ChemSusChem, vol.5, pp.46-64, 2012.

K. Rusevova, F. D. Kopinke, and A. Georgi, Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions-Influence of Fe(II)/Fe(III) ratio on catalytic performance, Journal of Hazardous Materials, vol.242, pp.433-440, 2012.

W. P. Kwan and B. M. Voelker, Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems, Environ. Sci. Technol, vol.37, pp.1150-1158, 2003.

P. Nidheesh, H. Olvera-vargas, and N. Oturan, Heterogeneous Electro-Fenton Process: Principles and Applications. Electro-Fenton Process, vol.61, pp.85-110, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01714027

A. S. Teja and P. Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles, Progress in Crystal Growth and Characterization of Materials, vol.55, pp.22-45, 2009.

E. Garrido-ramírez, B. Theng, and M. Mora, Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions-A review, Applied Clay Science, vol.47, pp.182-192, 2010.

L. Xu and J. Wang, Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles, Applied Catalysis B: Environmental, vol.1123, pp.117-126, 2012.

L. Shu-sung and D. G. Mirat, Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide Kinetics, Mechanism, and Implications. Environmental science & technology, vol.32, pp.1417-1423, 1998.

A. Roberto, C. Vincenzo, and M. Raffaele, Oxidation of 3,4-dihydroxybenzoic acid by means of hydrogen peroxide in aqueous goethite slurry, Water Research, vol.136, pp.2761-2768, 2002.

X. Xue, K. Hanna, and N. Deng, Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide, Journal of Hazardous Materials, vol.1166, pp.407-414, 2009.

G. Shan, S. Yan, and R. D. Tyagi, Applications of Nanomaterials in Environmental Science and Engineering: Review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, vol.13, pp.110-119, 2009.

J. M. Perez, Iron oxide nanoparticles Hidden talent, Nature Nanotechnology, vol.12, pp.535-536, 2007.

F. Shi, M. K. Tse, and M. M. Pohl, Tuning Catalytic Activity between Homogeneous and Heterogeneous Catalysis: Improved Activity and Selectivity of Free NanoFe2O3 in Selective Oxidations, Angewandte Chemie, vol.146, pp.8866-8868, 2007.

C. Tang, I. Lo, and . Mc, Magnetic nanoparticles: Essential factors for sustainable environmental applications. water research, vol.47, pp.2613-2632, 2013.

Z. Grigory and S. Raphael, Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation, Water Research, vol.42, pp.492-498, 2008.

W. Zhong and W. Jianlong, Degradation of sulfamethazine antibiotics using Fe3O4Mn3O4 nanocomposite as a Fenton-like catalyst, J Chem Technol Biotechnol, vol.192, pp.874-883, 2017.

M. Luo, S. Yuan, and M. Tong, An integrated catalyst of Pd supported on magnetic Fe3O4 nanoparticles: Simultaneous production of H2O2 and Fe2D for efficient electro-Fenton degradation of organic contaminants, Water Research, vol.48, pp.190-199, 2014.

X. Zhong, L. Xiang, and S. Royer, Degradation of C.I. Acid Orange 7 by heterogeneous Fenton oxidation in combination with ultrasonic irradiation, Journal of Chemical Technology and Biotechnology, vol.86, pp.970-977, 2011.

A. Thiam, E. Brillas, and F. Centellas, Electrochemical reactivity of Ponceau 4R (food additive E124) in different electrolytes and batch cells, Electrochimica Acta, vol.173, pp.523-533, 2015.

A. Thiam, E. Brillas, and J. A. Garrido, Routes for the electrochemical degradation of the artificial food azo-colour Ponceau 4R by advanced oxidation processes, Applied Catalysis B: Environmental, vol.180, pp.227-236, 2016.

M. Malakootian and A. Moridi, Efficiency of electro-Fenton process in removing Acid Red 18 dye from aqueous solutions. Process Safety and Environment Protection, vol.1111, pp.138-147, 2017.

A. R. Rahmani, K. Godini, and D. Nematollahi, Degradation of azo dye C.I. Acid Red 18 using an eco-friendly and continuous electrochemical process, Korean Journal of Chemical Engineering, vol.33, pp.532-538, 2016.

D. Cadwell and R. Adams, Colorimetric determination of Iron water with Ophenanthroline, Journal of American Water Works Association, vol.38, 1946.

S. P. Sun and A. T. Lemley, p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: Process optimization, kinetics, and degradation pathways, vol.349, pp.71-79, 2011.

B. Bouzayani, J. Meijide, and M. Pazos, Removal of polyvinylamine sulfonate anthrapyridone dye by application of heterogeneous electro-Fenton process. Environmental Science and Pollution Research, vol.24, pp.18309-18319, 2017.

D. Soares, I. C. , D. Silva, D. R. , D. Nascimento et al., Functional group influences on the reactive azo dye decolorization performance by electrochemical oxidation and electro-Fenton technologies. Environmental Science and Pollution Research, vol.24, pp.24167-24176, 2017.

R. Matta, K. Hanna, and S. Chiron, Fenton-like oxidation of 2,4,6-trinitroluene using different iron minerals, Science of the total environment, vol.385, pp.242-251, 2007.

G. V. Buxton, C. L. Greenstock, P. Helman, and W. , Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (·OH/·O-) in Aqueous Solution, Journal of Physical and Chemical Reference Data, vol.17, issue.2, pp.513-525, 1988.

N. Wang, L. Zhu, and D. Wang, Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2, Ultrasonics Sonochemistry, vol.117, pp.526-533, 2010.

, Table 1. Mineralization yield of AR18 as a function of the current intensity with Hematite and Magnetite catalyst after 180 min of electrolysis