G. Lütjering and J. C. Williams, Titanium, 2007.

S. Banerjee, R. Tewari, and G. K. Dey, Omega phase transformation-morphologies and mechanisms, Int. J. Mater. Res, vol.97, p.963, 2006.
DOI : 10.3139/146.101327

F. Prima, Evidence of ?-nanophase heterogeneous nucleation from ? particles in a ?metastable Ti-based alloy by high-resolution electron microscopy, Scripta Mater, vol.54, p.645, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00496124

T. Gloriant, Characterization of nanophase precipitation in a metastable ? titanium-based alloy by electrical resistivity, dilatometry and neutron diffraction, Scripta Mater, vol.58, p.271, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00265147

F. Sun, F. Prima, and T. Gloriant, High-strength nanostructured Ti-12Mo alloy from ductile metastable beta state precursor, Mater. Sci. Eng. A, vol.527, p.4262, 2010.
DOI : 10.1016/j.msea.2010.03.044

A. Devaraj, Experimental evidence of concurrent compositional and structural instabilities leading to ? precipitation in titanium-molybdenum alloys, Acta Mater, vol.60, p.596, 2012.

D. Choudhuri, Coupled experimental and computational investigation of omega phase evolution in a high misfit titanium-vanadium alloy, Acta Mater, vol.130, p.215, 2017.

M. Marteleur, On the design of new ?-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects, Scripta Mater, vol.66, p.749, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00763139

F. Sun, Investigation of early stage deformation mechanisms in a metastable ? titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects, Acta Mater, vol.61, p.6406, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00865174

F. Sun, A new titanium alloy with a combination of high strength, high strain hardening and improved ductility, Scripta Mater, vol.94, p.17, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01122443

S. Sadeghpour, S. M. Abbasi, and M. Morakabati, Deformation-induced martensitic transformation in a new metastable ? titanium alloy, J. Alloys Compd, vol.650, p.22, 2015.
DOI : 10.1016/j.jallcom.2015.07.263

C. Brozek, A ?-titanium alloy with extra high strain-hardening rate: Design and mechanical properties, Scripta Mater, vol.114, p.60, 2016.
DOI : 10.1016/j.scriptamat.2015.11.020

H. Y. Kim, Martensitic transformation, shape memory effect and superelasticity of Ti-Nb binary alloys, Acta Mater, vol.54, p.2419, 2006.

E. Bertrand, Synthesis and characterisation of a new superelastic Ti-25Ta-25Nb biomedical alloy, J. Mech. Behav. Biomed. Mater, vol.3, p.559, 2010.
DOI : 10.1016/j.jmbbm.2010.06.007

E. Bertrand, P. Castany, and T. Gloriant, Investigation of the martensitic transformation and the damping behavior of a superelastic Ti-Ta-Nb alloy, Acta Mater, vol.61, p.511, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00926947

Q. Li, Effect of Zr on super-elasticity and mechanical properties of Ti-24 at% Nb-(0, 2, 4) at% Zr alloy subjected to aging treatment, Mater. Sci. Eng. A, vol.536, p.197, 2012.

P. Castany, In situ synchrotron X-ray diffraction study of the martensitic transformation in superelastic Ti-24Nb-0.5N and Ti-24Nb-0.5O alloys, Acta Mater, vol.88, p.102, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01153415

Y. Yang, Characterization of the martensitic transformation in the superelastic Ti-24Nb4Zr-8Sn alloy by in situ synchrotron X-ray diffraction and dynamic mechanical analysis, Acta Mater, vol.88, p.25, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01153403

J. K. Bass, H. Fine, and G. J. Cisneros, Nickel hypersensitivity in the orthodontic patient, Amer. J. Orthodont. Dent. Orthoped, vol.103, p.280, 1993.

H. Kerosuo, Nickel allergy in adolescents in relation to orthodontic treatment and piercing of ears, Amer. J. Orthodont. Dent. Orthoped, vol.109, p.148, 1996.

H. H. Huang, Ion release from NiTi orthodontic wires in artificial saliva with various acidities, Biomater, vol.24, p.3585, 2003.
DOI : 10.1016/s0142-9612(03)00188-1

H. Y. Kim, Effect of Ta addition on shape memory behavior of Ti-22Nb alloy, Mater. Sci. Eng. A, vol.417, p.120, 2006.

J. I. Kim, Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys, Mater. Sci. Eng. A, vol.403, p.334, 2005.

F. Sun, Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy, Scripta Mater, vol.63, p.1053, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00762154

F. Sun, A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti-26Nb and Ti-20Nb-6Zr (at.%) alloys, J. Mech. Behav. Biomed. Mater, vol.4, p.1864, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00762640

Y. Yang, Texture investigation of the superelastic Ti-24Nb-4Zr-8Sn alloy, J. Alloys Compd, vol.591, p.85, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00941895

H. Jabir, Cristallographic orientation dependence of mechanical properties in the superelastic Ti-24Nb-4Zr-8Sn, submitted to, Phys. Rev. Mater

H. Y. Kim, Texture and shape memory behavior of Ti-22Nb-6Ta alloy, Acta Mater, vol.54, p.423, 2006.
DOI : 10.1016/j.actamat.2005.09.014

M. F. Ijaz, Superelastic properties of biomedical (Ti-Zr)-Mo-Sn alloys, Mater. Sci. Eng. C, vol.48, p.11, 2015.
DOI : 10.1016/j.msec.2014.11.010

M. Tahara, Cyclic deformation behavior of a Ti-26 at.% Nb alloy, Acta Mater, vol.57, p.2461, 2009.

E. G. Obbard, Mechanics of superelasticity in Ti-30Nb-(8-10)Ta-5Zr alloy, Acta Mater, vol.58, p.3557, 2010.

A. Ramarolahy, Microstructure and mechanical behavior of superelastic Ti-24Nb-0.5O and Ti-24Nb-0.5N biomedical alloys, J. Mech. Behav. Biomed. Mater, vol.9, p.83, 2012.
DOI : 10.1016/j.jmbbm.2012.01.017

URL : https://hal.archives-ouvertes.fr/hal-00926952

M. Tahara, Lattice modulation and superelasticity in oxygen-added ?-Ti alloys, Acta Mater, vol.59, p.6208, 2011.
DOI : 10.1016/j.actamat.2011.06.015

P. Castany, M. Besse, and T. Gloriant, Dislocation mobility in gum metal beta-titanium alloy studied via in situ transmission electron microscopy, Phys. Rev. B, vol.84, p.20201, 2011.
DOI : 10.1103/physrevb.84.020201

M. Besse, P. Castany, and T. Gloriant, Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys: A comparative study on the oxygen influence, Acta Mater, vol.59, p.5982, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00926966

P. Castany, M. Besse, and T. Gloriant, situ TEM study of dislocation slip in a metastable ? titanium alloy, Scripta Mater, vol.66, p.371, 2012.

P. Castany, Deformation mechanisms and biocompatibility of the superelastic Ti-23Nb0.7Ta-2Zr-0.5N alloy, Shape Memory and Superelasticity, vol.2, p.18, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01614786

Y. Kamimura, Thermally Activated Deformation of Gum Metal: A Strong Evidence for the Peierls Mechanism of Deformation, Mater. Trans, vol.56, p.2084, 2015.

E. Plancher, On dislocation involvement in Ti-Nb gum metal plasticity, Scripta Mater, vol.68, p.805, 2013.
DOI : 10.1016/j.scriptamat.2013.01.034

D. C. Chrzan, Spreading of dislocation cores in elastically anisotropic body-centeredcubic materials: The case of gum metal, Phys. Rev. B, vol.82, p.184202, 2010.

J. Huang, H. Xing, and J. Sun, Structural stability and generalized stacking fault energies in ? TiNb alloys: Relation to dislocation properties, Scripta Mater, vol.66, p.682, 2012.
DOI : 10.1016/j.scriptamat.2012.01.023

S. Hanada and O. Izumi, Transmission electron microscopic observations of mechanical twinning in metastable beta titanium alloys, Metall. Trans. A, vol.17, p.1409, 1986.

M. Abdel-hady, K. Hinoshita, and M. Morinaga, General approach to phase stability and elastic properties of ?-type Ti-alloys using electronic parameters, Scripta Mater, vol.55, p.477, 2006.

M. Ahmed, The influence of ? phase stability on deformation mode and compressive mechanical properties of Ti-10V-3Fe-3Al alloy, Acta Mater, vol.84, p.124, 2015.

E. Bertrand, Twinning system selection in a metastable ?-titanium alloy by Schmid factor analysis, Scripta Mater, vol.64, p.1110, 2011.
DOI : 10.1016/j.scriptamat.2011.02.033

URL : https://hal.archives-ouvertes.fr/hal-00926958

M. J. Blackburn and J. A. Feeney, Stress-induced transformations in Ti-Mo alloys, J. Inst. Met, vol.99, p.132, 1971.

P. Castany, Reversion of a parent {130}<310> ?" martensitic twinning system at the origin of {332}<113> ? twins observed in metastable beta titanium alloys, Phys. Rev. Lett, vol.117, p.245501, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438121

E. Bertrand, Deformation twinning in the full-?" martensitic Ti-25Ta-20Nb shape memory alloy, Acta Mater, vol.105, p.94, 2016.
DOI : 10.1016/j.actamat.2015.12.001

URL : https://hal.archives-ouvertes.fr/hal-01254807

M. Tahara, Plastic deformation behaviour of single-crystalline martensite of Ti-Nb shape memory alloy, Sci. Rep, vol.7, p.15715, 2017.

Y. Yang, Stress release-induced interfacial twin boundary ? phase formation in a ? type Ti-based single crystal displaying stress-induced ?" martensitic transformation, Acta Mater, vol.149, p.97, 2018.
DOI : 10.1016/j.actamat.2018.02.036

URL : https://hal.archives-ouvertes.fr/hal-01740146

J. Fu, Novel Ti-base superelastic alloys with large recovery strain and excellent biocompatibility, Acta Biomater, vol.17, p.56, 2015.
DOI : 10.1016/j.actbio.2015.02.001

M. F. Ijaz, Design of a novel superelastic Ti-23Hf-3Mo-4Sn biomedical alloy combining low modulus, high strength and large recovery strain, Mater. Lett, vol.177, p.39, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01307770

A. Ramalohary, Superelastic property induced by low-temperature heating of a shape memory Ti-24Nb-0.5Si biomedical alloy, Scripta Mater, vol.88, p.25, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01114428

R. Boyer, Aerospace applications of beta titanium alloys, JOM, vol.46, p.20, 1994.
DOI : 10.1007/bf03220743

P. J. Winkler, M. A. Äubler, and M. Peters, Application of Ti alloys in the European aerospace industry, Science and Technology, p.2877, 1992.

P. J. Bania, Beta titanium alloys and their role in the titanium industry, JOM, vol.46, p.16, 1994.
DOI : 10.1007/bf03220742

M. Morinaga, Theoretical design of titanium alloys, Sixth World Conference on Titanium III, p.1601, 1988.

D. Kuroda, Design and mechanical properties of new ? type titanium alloys for implant materials, Mater. Sci. Eng. A, vol.243, p.244, 1998.

M. Morinaga, H. Adachi, and M. Tsukada, Electronic structure and phase stability of ZrO2, J. Phys. Chem. Solids, vol.44, p.301, 1983.
DOI : 10.1016/0022-3697(83)90098-7

M. Morinaga, New PHACOMP and its applications to alloy design, Superalloys, vol.1984, p.523, 1984.
DOI : 10.7449/1984/superalloys_1984_523_532

URL : https://doi.org/10.7449/1984/superalloys_1984_523_532

M. Morinaga, Solid solubilities in transition-metal-based fcc alloys, Philos. Mag. A, vol.51, p.223, 1985.

M. Morinaga, Theoretical design of ?-type titanium alloys, Proceedings of the 7th International Conference on Titanium, p.276, 1992.

M. Abdel-hady, Phase stability change with Zr content in ?-type Ti-Nb alloys, Scripta Mater, vol.57, p.1000, 2007.

J. Gao, Segregation mediated heterogeneous structure in a metastable ? titanium alloy with a superior combination of strength and ductility, Sci. Rep, vol.8, p.7512, 2018.

X. Min, Effect of oxygen content on deformation mode and corrosion behavior in ?-type Ti-Mo alloy, Mater. Sci. Eng. A, vol.684, p.534, 2017.

I. Gutierrez-urrutia, C. Li, and K. Tsuchiya, {332}< 113> detwinning in a multilayered bcc-Ti10Mo-Fe alloy, J. Mater. Sci, vol.52, p.7858, 2017.

J. Zhang, Fabrication and characterization of a novel ? metastable Ti-Mo-Zr alloy with large ductility and improved yield strength, Mater. Charac, vol.139, p.421, 2018.

X. Min, Mechanical twinning and dislocation slip multilayered deformation microstructures in ?-type Ti-Mo base alloy, Scripta Mater, vol.102, p.79, 2015.

X. Zhou and X. Min, Effect of grain boundary angle on {332}< 113> twinning transfer behavior in ?-type Ti-15Mo-5Zr alloy, J. Mater. Sci, vol.53, p.8604, 2018.

M. Buzatu, Obtaining and Characterization of the Ti15Mo5W Alloy for Biomedical Applications, Mater. Plast, vol.54, p.596, 2017.

D. Kang, Enhanced work hardening by redistribution of oxygen in (?+?)-type Ti4Cr-0.2O alloys, Mater. Sci. Eng. A, vol.606, p.101, 2014.

M. Niinomi, Enhancement of Mechanical Biocompatibility of Titanium Alloys by Deformation-Induced Transformation, Mater. Sci. Forum, vol.879, 2017.

M. Ahmed, Stress-induced twinning and phase Transformations during the compression of a Ti-10V-3Fe-3Al Alloy, Metall. Mater. Trans. A, vol.48, p.2791, 2017.

C. Li, Effect of strain rate on stress-induced martensitic formation and the compressive properties of Ti-V-(Cr,Fe)-Al alloys, Mater. Sci. Eng. A, vol.573, p.111, 2013.

X. L. Wang, Role of oxygen in stress-induced ? phase transformation and {332}<113> mechanical twinning in ? Ti-20V alloy, Scripta Mater, vol.96, p.37, 2015.

P. F. Santos, Improvement of microstructure, mechanical and corrosion properties of biomedical Ti-Mn alloys by Mo addition, Mater. Design, vol.110, p.414, 2016.

H. Zhan, On the deformation mechanisms and strain rate sensitivity of a metastable ? Ti-Nb alloy, Scripta Mater, vol.107, p.34, 2015.

M. J. Lai, C. C. Tasan, and D. Raabe, On the mechanism of {332} twinning in metastable ? titanium alloys, Acta Mater, vol.111, p.173, 2016.

B. Lee, Stress-induced ?" martensitic transformation mechanism in deformation twinning of metastable ?-type Ti-27Nb-0.5 Ge alloy under tension, Mater. Trans, vol.57, p.1868, 2016.

L. Lilensten, Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity, Mater. Res. Lett, vol.5, p.110, 2017.