A. Tresserra-rimbau, R. M. Lamuela-raventos, and J. J. Moreno, Polyphenols, food and pharma. Current knowledge and directions for future research, Biochem. Pharmacol, vol.156, pp.79-98, 2018.

V. Knaze, J. A. Rothwell, R. Zamora-ros, A. Moskal, C. Kyrø et al., A new food-composition database for 437 polyphenols in 19,899 raw and prepared foods used to estimate polyphenol intakes in adults from 10 European countries, Am. J. Clin. Nutr, vol.108, pp.517-524, 2018.

C. Angeloni, T. Maraldi, D. Milenkovic, and D. Vauzour, Dietary Polyphenols and Their Effects on Cell Biochemistry and Pathophysiology, pp.1-2, 2014.

Y. Surh, Cancer chemoprevention with dietary phytochemicals, Nat. Rev. Cancer, vol.3, pp.768-780, 2003.

B. Hennig, M. C. Petriello, M. V. Gamble, Y. Surh, L. A. Kresty et al., The role of nutrition in influencing mechanisms involved in environmentally mediated diseases, Rev. Environ. Health, vol.33, pp.87-97, 2018.

T. Wongwarawipat, N. Papageorgiou, D. Bertsias, G. Siasos, and D. Tousoulis, Olive Oil-related Anti-inflammatory Effects on Atherosclerosis: Potential Clinical Implications, Endocr. Metab. Immune Disord. Drug Targets, vol.18, 2017.

M. E. Zujko, A. Wa?kiewicz, A. M. Witkowska, D. Szcze?niewska, T. Zdrojewski et al., Dietary Total Antioxidant Capacity and Dietary Polyphenol Intake and Prevalence of Metabolic Syndrome in Polish Adults: A Nationwide Study, Oxidative Med. Cell. Longev, pp.1-10, 2018.

M. E. Goetz, S. E. Judd, M. M. Safford, T. J. Hartman, W. M. Mcclellan et al., Dietary flavonoid intake and incident coronary heart disease: the REasons for Geographic and Racial Differences in Stroke (REGARDS) study, Am. J. Clin. Nutr, vol.104, pp.1236-1244, 2016.

R. H. Liu, Health-promoting components of fruits and vegetables in the diet, Adv. Nutr, vol.4, pp.384-392, 2013.

T. P. Anunciato and P. A. Da-rocha-filho, Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals, J. Cosmet. Dermatol, vol.11, pp.51-54, 2012.

J. M. Pezzuto, T. P. Kondratyuk, and T. Ogas, Resveratrol derivatives: a patent review, Expert Opin. Ther. Pat, vol.23, pp.1529-1546, 2009.

S. Dragan, F. Andrica, M. Serban, and R. Timar, Polyphenols-rich natural products for treatment of diabetes, Curr. Med. Chem, vol.22, pp.14-22, 2015.

M. S. Pedras and P. W. Ahiahonu, Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi, Phytochemistry, vol.66, pp.391-411, 2005.

F. D. Dakora and D. A. Phillips, Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins, Physiol. Mol. Plant Pathol, vol.49, pp.1-20, 1996.

E. A. Schmelz, A. Huffaker, J. W. Sims, S. A. Christensen, X. Lu et al., Biosynthesis, elicitation and roles of monocot terpenoid phytoalexins, Plant J, vol.79, pp.659-678, 2014.

W. Wang, Y. Li, P. Dang, S. Zhao, D. Lai et al., Rice Secondary Metabolites: Structures, Roles, Biosynthesis, and Metabolic Regulation, Molecules, vol.23, 2018.

I. S. Park, H. J. Kim, Y. Jeong, W. Kim, and J. Kim, Differential abilities of Korean soybean varieties to biosynthesize glyceollins by biotic and abiotic elicitors, Food Sci. Biotechnol, vol.26, pp.255-261, 2017.

A. K. Block, M. M. Vaughan, E. A. Schmelz, and S. A. Christensen, Biosynthesis and function of terpenoid defense compounds in maize (Zea mays), Planta, 2018.

C. E. Ejike, M. Gong, and C. C. Udenigwe, Phytoalexins from the Poaceae: Biosynthesis, function and prospects in food preservation, Food Res. Int, vol.52, pp.167-177, 2013.

W. Hidalgo, J. N. Chandran, R. C. Menezes, F. Otálvaro, and B. Schneider, Phenylphenalenones protect banana plants from infection by Mycosphaerella fijiensis and are deactivated by metabolic conversion, Plant Cell Environ, vol.39, pp.492-513, 2016.

A. M. Timperio, A. ;-d'alessandro, M. Fagioni, P. Magro, and L. Zolla, Production of the phytoalexins trans-resveratrol and delta-viniferin in two economy-relevant grape cultivars upon infection with Botrytis cinerea in field conditions, Plant Physiol. Biochem. PPB, vol.50, pp.65-71, 2012.

M. R. Lee, J. Y. Kim, J. Chun, S. Park, H. J. Kim et al., Induction of glyceollins by fungal infection in varieties of Korean soybean, J. Microbiol. Biotechnol, vol.20, pp.1226-1229, 2010.

H. J. Kim, J. Lim, W. Kim, and J. Kim, Soyabean glyceollins: biological effects and relevance to human health, Proc. Nutr. Soc, vol.71, p.24, 2012.

S. F. Bamji and C. Corbitt, Glyceollins: Soybean phytoalexins that exhibit a wide range of health-promoting effects, J. Funct. Foods, vol.34, pp.98-105, 2017.

S. Lecomte, F. Chalmel, F. Ferriere, F. Percevault, N. Plu et al., Glyceollins trigger anti-proliferative effects through estradiol-dependent and independent pathways in breast cancer cells, Cell Commun. Signal, vol.15, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01560288

V. A. Salvo, S. M. Boue, J. P. Fonseca, S. Elliott, C. Corbitt et al., Antiestrogenic Glyceollins Suppress Human Breast and Ovarian Carcinoma Tumorigenesis, Clin. Cancer Res, vol.12, pp.7159-7164, 2006.

M. E. Burow, S. M. Boue, B. M. Collins-burow, L. I. Melnik, B. N. Duong et al., Phytochemical Glyceollins, Isolated from Soy, Mediate Antihormonal Effects through Estrogen Receptor ? and ?, J. Clin. Endocrinol. Metab, vol.86, pp.1750-1758, 2001.

M. C. Zimmermann, S. L. Tilghman, S. M. Boue, V. A. Salvo, S. Elliott et al., Glyceollin I, a Novel Antiestrogenic Phytoalexin Isolated from Activated Soy, J. Pharmacol. Exp. Ther, vol.332, pp.35-45, 2010.

S. H. Lee, J. Lee, M. H. Jung, and Y. M. Lee, Glyceollins, a novel class of soy phytoalexins, inhibit angiogenesis by blocking the VEGF and bFGF signaling pathways, Mol. Nutr. Food Res, vol.57, pp.225-234, 2013.

S. Lee, J. Jee, J. Bae, K. Liu, and Y. M. Lee, A Group of Novel HIF-1? Inhibitors, Glyceollins, Blocks HIF-1? Synthesis and Decreases Its Stability via Inhibition of the PI3K/AKT/mTOR Pathway and Hsp90 Binding: GLYCEOLLINS INHIBIT HIF-1?, J. Cell. Physiol, vol.230, pp.853-862, 2015.

P. P. Carriere, S. D. Llopis, A. C. Naiki, G. Nguyen, T. Phan et al., Glyceollin I Reverses Epithelial to Mesenchymal Transition in Letrozole Resistant Breast Cancer through ZEB1, Int. J. Environ. Res. Public. Health, vol.13, 2016.

R. S. Burden and J. A. Bailey, Structure of the phytoalexin from soybean, Phytochemistry, vol.14, pp.1389-1390, 1975.

N. T. Keen, A. I. Zaki, and J. J. Sims, Biosynthesis of hydroxyphaseollin and related isoflavanoids in disease-resistant soybean hypocotyls, Phytochemistry, vol.11, pp.1031-1039, 1972.

C. R. Schopfer, G. Kochs, F. Lottspeich, and J. Ebel, Molecular characterization and functional expression of dihydroxypterocarpan 6a-hydroxylase, an enzyme specific for pterocarpanoid phytoalexin biosynthesis in soybean (Glycine max L, FEBS Lett, vol.432, pp.182-186, 1998.

K. Yoneyama, T. Akashi, and T. Aoki, Molecular Characterization of Soybean Pterocarpan 2-Dimethylallyltransferase in Glyceollin Biosynthesis: Local Gene and Whole-Genome Duplications of Prenyltransferase Genes Led to the Structural Diversity of Soybean Prenylated Isoflavonoids, Plant Cell Physiol, vol.57, pp.2497-2509, 2016.

T. Akashi, K. Sasaki, T. Aoki, S. Ayabe, and K. Yazaki, Molecular cloning and characterization of a cDNA for pterocarpan 4-dimethylallyltransferase catalyzing the key prenylation step in the biosynthesis of glyceollin, a soybean phytoalexin, Plant Physiol, vol.149, pp.683-693, 2009.

A. Sukumaran, T. Mcdowell, L. Chen, J. Renaud, and S. Dhaubhadel, Isoflavonoid-specific prenyltransferase gene family in soybean: GmPT01, a pterocarpan 2-dimethylallyltransferase involved in glyceollin biosynthesis, Plant J. Cell Mol. Biol, 2018.

R. Welle and H. Grisebach, Induction of phytoalexin synthesis in soybean: enzymatic cyclization of prenylated pterocarpans to glyceollin isomers, Arch. Biochem. Biophys, vol.263, pp.191-198, 1988.

K. Farrell, M. A. Jahan, and N. Kovinich, Distinct Mechanisms of Biotic and Chemical Elicitors Enable Additive Elicitation of the Anticancer Phytoalexin Glyceollin I, vol.22, p.1261, 2017.

C. E. Wood, T. B. Clarkson, S. E. Appt, A. A. Franke, S. M. Boue et al., Effects of Soybean Glyceollins and Estradiol in Postmenopausal Female Monkeys, Nutr. Cancer, vol.56, pp.74-81, 2006.

S. M. Boué, I. A. Isakova, M. E. Burow, H. Cao, D. Bhatnagar et al., Soy Isoflavone Phytoalexins, Improve Oral Glucose Disposal by Stimulating Glucose Uptake, J. Agric. Food Chem, vol.60, pp.6376-6382, 2012.

S. Park, D. S. Kim, J. H. Kim, J. S. Kim, and H. J. Kim, Glyceollin-containing fermented soybeans improve glucose homeostasis in diabetic mice, Nutrition, vol.28, pp.204-211, 2012.

S. S. Quadri, R. E. Stratford, S. M. Boué, and R. B. Cole, Screening and Identification of Glyceollins and Their Metabolites by Electrospray Ionization Tandem Mass Spectrometry with Precursor Ion Scanning, Anal. Chem, vol.85, pp.1727-1733, 2013.

S. S. Quadri, R. E. Stratford, S. M. Boué, and R. B. Cole, Identification of Glyceollin Metabolites Derived from Conjugation with Glutathione and Glucuronic Acid in Male ZDSD Rats by Online Liquid Chromatography-Electrospray Ionization Tandem Mass Spectrometry, J. Agric. Food Chem, vol.62, pp.2692-2700, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01664189

Y. Liu and M. Hu, Absorption and metabolism of flavonoids in the caco-2 cell culture model and a perused rat intestinal model, Drug Metab. Dispos. Biol. Fate Chem, vol.30, pp.370-377, 2002.

C. Manach and J. L. Donovan, Pharmacokinetics and metabolism of dietary flavonoids in humans, Free Radic. Res, vol.38, pp.771-785, 2004.

K. R. Patel, C. Andreadi, R. G. Britton, E. Horner-glister, A. Karmokar et al., Sulfate metabolites provide an intracellular pool for resveratrol generation and induce autophagy with senescence, Sci. Transl. Med, 2013.

C. Chimezie, A. C. Ewing, S. S. Quadri, R. B. Cole, S. M. Boué et al., Glyceollin Transport, Metabolism, and Effects on P-Glycoprotein Function in Caco-2 Cells, J. Med. Food, vol.17, pp.462-471, 2014.

C. Chimezie, A. Ewing, C. Schexnayder, M. Bratton, E. Glotser et al., Glyceollin Effects on MRP2 and BCRP in Caco-2 Cells, and Implications for Metabolic and Transport Interactions, J. Pharm. Sci, vol.105, pp.972-981, 2016.

S. Boué, I. Fortgang, R. J. Levy, D. Bhatnagar, M. Burow et al., A novel gastrointestinal microbiome modulator from soy pods reduces absorption of dietary fat in mice, Obesity, vol.24, pp.87-95, 2016.

J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers et al., Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012: Globocan 2012, Int. J. Cancer, vol.136, pp.359-386, 2015.

X. Dai, L. Xiang, T. Li, and Z. Bai, Cancer Hallmarks, Biomarkers and Breast Cancer Molecular Subtypes, J. Cancer, vol.7, pp.1281-1294, 2016.

F. Pakdel, Molecular Pathways of Estrogen Receptor Action, Int. J. Mol. Sci, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01888875

C. M. Klinge, Estrogen receptor interaction with co-activators and co-repressors, Steroids, vol.65, pp.227-251, 2000.

S. Safe and K. Kim, Nuclear Receptor-Mediated Transactivation through Interaction with Sp Proteins, In Progress in Nucleic Acid Research and Molecular Biology, vol.77, pp.1-36, 2004.

R. G. Mehta, M. Hawthorne, R. R. Mehta, K. E. Torres, X. Peng et al., Differential Roles of ER? and ER? in Normal and Neoplastic Development in the Mouse Mammary Gland, PLoS ONE, vol.9, 2014.

F. Payton-stewart, R. S. Khupse, S. M. Boué, S. Elliott, M. C. Zimmermann et al., Glyceollin I enantiomers distinctly regulate ER-mediated gene expression, Steroids, vol.75, pp.870-878, 2010.

S. M. Boué, S. L. Tilghman, S. Elliott, M. C. Zimmerman, K. Y. Williams et al., Identification of the Potent Phytoestrogen Glycinol in Elicited Soybean (Glycine max), Endocrinology, vol.150, pp.2446-2453, 2009.

M. R. Bratton, E. C. Martin, S. Elliott, L. V. Rhodes, B. M. Collins-burow et al., Glyceollin, a novel regulator of mTOR/p70S6 in estrogen receptor positive breast cancer, J. Steroid Biochem. Mol. Biol, vol.150, pp.17-23, 2015.

D. C. Fingar and J. Blenis, Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression, Oncogene, vol.23, pp.3151-3171, 2004.

K. Brown, Breast cancer chemoprevention: risk-benefit effects of the antioestrogen tamoxifen, Expert Opin. Drug Saf, vol.1, pp.79-101, 2002.

F. Payton-stewart, N. W. Schoene, Y. S. Kim, M. E. Burow, T. E. Cleveland et al., Molecular effects of soy phytoalexin glyceollins in human prostate cancer cells LNCaP, Mol. Carcinog, vol.48, pp.862-871, 2009.

L. V. Rhodes, S. L. Tilghman, S. M. Boue, S. Wang, H. Khalili et al., Glyceollins as novel targeted therapeutic for the treatment of triple-negative breast cancer, Oncol. Lett, vol.3, pp.163-171, 2012.

M. Guarino, B. Rubino, and G. Ballabio, The role of epithelial-mesenchymal transition in cancer pathology, Pathology, vol.39, pp.305-318, 2007.

O. Schmalhofer, S. Brabletz, and T. Brabletz, E-cadherin, beta-catenin, and ZEB1 in malignant progression of cancer, Cancer Metastasis Rev, vol.28, pp.151-166, 2009.

P. Carmeliet, Angiogenesis in health and disease, Nat. Med, vol.9, pp.653-660, 2003.

W. G. Kaelin and P. J. Ratcliffe, Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway, Mol. Cell, vol.30, pp.393-402, 2008.

J. S. Isaacs, Y. Jung, E. G. Mimnaugh, A. Martinez, F. Cuttitta et al., Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway, J. Biol. Chem, vol.277, pp.29936-29944, 2002.

G. L. Semenza, Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics, Oncogene, vol.29, pp.625-634, 2010.

Q. Ke and M. Costa, Hypoxia-inducible factor-1 (HIF-1), Mol. Pharmacol, vol.70, pp.1469-1480, 2006.

H. J. Kim, C. L. Jung, Y. S. Jeong, and J. Kim, Soybean-derived glyceollins induce apoptosis through ROS generation, Food Funct, vol.5, pp.688-695, 2014.

B. R. Kim, J. Seo, M. Sung, J. H. Park, H. Suh et al., Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary tumorigenesis by glyceollins, Mol. Nutr. Food Res, vol.59, pp.907-917, 2015.

T. Sözen, L. Öz???k, and N. Ç. Ba?aran, An overview and management of osteoporosis, Eur. J. Rheumatol, vol.4, pp.46-56, 2017.

S. K. Sandhu and G. Hampson, The pathogenesis, diagnosis, investigation and management of osteoporosis, J. Clin. Pathol, vol.64, pp.1042-1050, 2011.

L. Aghebati-maleki, S. Dolati, R. Zandi, A. Fotouhi, M. Ahmadi et al., Prospect of mesenchymal stem cells in therapy of osteoporosis: A review, J. Cell. Physiol, 2018.

M. E. Bateman, A. L. Strong, R. S. Hunter, M. R. Bratton, R. Komati et al., Osteoinductive effects of glyceollins on adult mesenchymal stromal/stem cells from adipose tissue and bone marrow, Phytomed. Int. J. Phytother. Phytopharm, vol.27, pp.39-51, 2017.

J. E. Manson, A. K. Aragaki, J. E. Rossouw, G. L. Anderson, R. L. Prentice et al., Menopausal Hormone Therapy and Long-term All-Cause and Cause-Specific Mortality: The Women's Health Initiative Randomized Trials, JAMA, vol.318, pp.927-938, 2017.

A. De-wilde, M. Lieberherr, C. Colin, and A. Pointillart, A low dose of daidzein acts as an ERbeta-selective agonist in trabecular osteoblasts of young female piglets, J. Cell. Physiol, pp.253-262, 0200.

S. Park, I. S. Ahn, J. H. Kim, M. R. Lee, J. S. Kim et al., Glyceollins, one of the phytoalexins derived from soybeans under fungal stress, enhance insulin sensitivity and exert insulinotropic actions, J. Agric. Food Chem, vol.58, pp.1551-1557, 2010.

H. Huang, Z. Xie, S. M. Boue, D. Bhatnagar, W. Yokoyama et al., Cholesterol-lowering activity of soy-derived glyceollins in the golden Syrian hamster model, J. Agric. Food Chem, vol.61, pp.5772-5782, 2013.

C. E. Wood, S. M. Boue, B. M. Collins-burow, L. V. Rhodes, T. C. Register et al., Glyceollin-elicited soy protein consumption induces distinct transcriptional effects as compared to standard soy protein, J. Agric. Food Chem, vol.60, pp.81-86, 2012.

H. J. Kim, H. Suh, J. H. Kim, S. Park, Y. C. Joo et al., Antioxidant activity of glyceollins derived from soybean elicited with Aspergillus sojae, J. Agric. Food Chem, vol.58, pp.11633-11638, 2010.

H. J. Kim, E. Di-luccio, A. T. Kong, and J. Kim, Nrf2-mediated induction of phase 2 detoxifying enzymes by glyceollins derived from soybean exposed to Aspergillus sojae, Biotechnol. J, vol.6, pp.525-536, 2011.

C. L. Jung, H. J. Kim, J. H. Park, A. T. Kong, C. H. Lee et al., Synergistic activation of the Nrf2-signaling pathway by glyceollins under oxidative stress induced by glutathione depletion, J. Agric. Food Chem, vol.61, pp.4072-4078, 2013.

J. Y. Seo, B. R. Kim, J. Oh, and J. Kim, Soybean-Derived Phytoalexins Improve Cognitive Function through Activation of Nrf2/HO-1 Signaling Pathway, Int. J. Mol. Sci, vol.19, 2018.

S. F. Bamji, R. B. Page, D. Patel, A. Sanders, A. R. Alvarez et al., Soy glyceollins regulate transcript abundance in the female mouse brain, Funct. Integr. Genom, vol.15, pp.549-561, 2015.

S. F. Bamji, E. Rouchka, Y. Zhang, X. Li, T. Kalbfleisch et al., Next generation sequencing analysis of soy glyceollins and 17-? estradiol: Effects on transcript abundance in the female mouse brain, Mol. Cell. Endocrinol, vol.471, pp.15-21, 2018.

H. J. Kim, M. Sung, and J. Kim, Anti-inflammatory effects of glyceollins derived from soybean by elicitation with Aspergillus sojae, Inflamm. Res. Off. J. Eur. Histamine Res. Soc. Al, vol.60, pp.909-917, 2011.

E. Yoon, H. Kim, S. Cui, Y. Kim, and S. Lee, Soybean glyceollins mitigate inducible nitric oxide synthase and cyclooxygenase-2 expression levels via suppression of the NF-?B signaling pathway in RAW 264.7 cells, Int. J. Mol. Med, vol.29, pp.711-717, 2012.

W. Lee, S. Ku, Y. Lee, and J. Bae, Anti-septic effects of glyceollins in HMGB1-induced inflammatory responses in vitro and in vivo, Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc, vol.63, pp.1-8, 2014.

H. J. Kim, B. Cha, B. Choi, J. S. Lim, J. Woo et al., Glyceollins inhibit platelet-derived growth factor-mediated human arterial smooth muscle cell proliferation and migration, Br. J. Nutr, vol.107, pp.24-35, 2012.

M. Song, I. Baek, S. B. Jeon, M. Seo, Y. Kim et al., Effects of glyceollin I on vascular contraction in rat aorta, Naunyn-Schmiedebergs Arch. Pharmacol, vol.381, pp.517-528, 2010.

Y. Lee, H. Kim, K. J. Lee, H. W. Jeon, S. Cui et al., Inhibitory effect of glyceollin isolated from soybean against melanogenesis in B16 melanoma cells, BMB Rep, vol.43, pp.461-467, 2010.

S. Shin and Y. Lee, Glyceollins, a novel class of soybean phytoalexins, inhibit SCF-induced melanogenesis through attenuation of SCF/c-kit downstream signaling pathways, Exp. Mol. Med, vol.45, 2013.

V. Matschke, C. Theiss, and J. Matschke, Oxidative stress: the lowest common denominator of multiple diseases, Neural Regen. Res, vol.14, pp.238-241, 2019.

F. Cacciapuoti, Oxidative Stress as "Mother" of Many Human Diseases at Strong Clinical Impact, J. Cardiovasc. Med. Cardiol, vol.3, pp.1-006, 2016.

Y. Tang and R. Tsao, Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: A review, Mol. Nutr. Food Res, p.61, 2017.

C. Alasalvar and B. W. Bolling, Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects, Br. J. Nutr, vol.113, pp.68-78, 2015.

M. Baranowska and A. Bartoszek, Antioxidant and antimicrobial properties of bioactive phytochemicals from cranberry, Postepy Hig. Med. Dosw. (Online), vol.70, pp.1460-1468, 2016.

K. Ganesan and B. Xu, A Critical Review on Polyphenols and Health Benefits of Black Soybeans, Nutrients, vol.9, p.455, 2017.

P. Nigro, G. Pompilio, M. C. Capogrossi, and . Cyclophilin, A: a key player for human disease, Cell Death Dis, 2013.

K. Ando, Y. Kudo, K. Aoyagi, R. Ishikawa, M. Igarashi et al., Calmodulin-dependent regulation of neurotransmitter release differs in subsets of neuronal cells, Brain Res, vol.1535, pp.1-13, 2013.

F. Ferriere, D. Habauzit, F. Pakdel, C. Saligaut, and G. Flouriot, Unliganded Estrogen Receptor Alpha Promotes PC12 Survival during Serum Starvation, PLoS ONE, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00865332

D. Habauzit, F. Ferrière, N. Botherel, G. Flouriot, F. Pakdel et al., Differentiation of PC12 cells expressing estrogen receptor alpha: A new bioassay for endocrine-disrupting chemicals evaluation, Chemosphere, vol.112, pp.240-247, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01063907

S. Lecomte, M. Lelong, G. Bourgine, T. Efstathiou, C. Saligaut et al., Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation, Toxicol. Appl. Pharmacol, vol.325, pp.61-70, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01558816

L. Ferrero-miliani, O. H. Nielsen, P. S. Andersen, and S. E. Girardin, Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1? generation, Clin. Exp. Immunol, vol.147, pp.227-235, 2007.

A. B. Kunnumakkara, B. L. Sailo, K. Banik, C. Harsha, S. Prasad et al., Chronic diseases, inflammation, and spices: how are they linked?, J. Transl. Med, vol.16, 2018.

K. Strohacker and B. K. Mcfarlin, Influence of obesity, physical inactivity, and weight cycling on chronic inflammation, Front. Biosci. Elite Ed, vol.2, pp.98-104, 2010.

L. Pellegrini, E. Foglio, E. Pontemezzo, A. Germani, M. A. Russo et al., HMGB1 and repair: focus on the heart, Pharmacol. Ther, 2018.

H. Shimokawa, S. Sunamura, and K. Satoh, RhoA/Rho-Kinase in the Cardiovascular System, Circ. Res, vol.118, pp.352-366, 2016.

W. Hu and Y. Huang, Targeting the platelet-derived growth factor signalling in cardiovascular disease, Clin. Exp. Pharmacol. Physiol, vol.42, pp.1221-1224, 2015.

M. Brenner and V. J. Hearing, The Protective Role of Melanin against UV Damage in Human Skin, Photochem. Photobiol, vol.84, pp.539-549, 2008.

T. Pillaiyar, M. Manickam, and S. Jung, Downregulation of melanogenesis: drug discovery and therapeutic options, Drug Discov. Today, vol.22, pp.282-298, 2017.

T. Pillaiyar, M. Manickam, and S. Jung, Recent development of signaling pathways inhibitors of melanogenesis, Cell. Signal, vol.40, pp.99-115, 2017.

L. Marchand and L. , Cancer preventive effects of flavonoids-A review, Biomed. Pharmacother. Biomed. Pharmacother, vol.56, pp.296-301, 2002.

K. B. Pandey and S. I. Rizvi, Plant polyphenols as dietary antioxidants in human health and disease, Oxidative Med. Cell. Longev, vol.2, pp.270-278, 2009.

M. G. Van-de-schans, J. Vincken, P. De-waard, A. R. Hamers, T. F. Bovee et al., Glyceollins and dehydroglyceollins isolated from soybean act as SERMs and ER subtype-selective phytoestrogens, J. Steroid Biochem. Mol. Biol, vol.156, pp.53-63, 2016.

F. Aqil, R. Munagala, J. Jeyabalan, and M. V. Vadhanam, Bioavailability of phytochemicals and its enhancement by drug delivery systems, Cancer Lett, vol.334, pp.133-141, 2013.

T. Walle, Bioavailability of resveratrol: Resveratrol bioavailability, Ann. N. Y. Acad. Sci, vol.1215, pp.9-15, 2011.