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Abstract — External beam radiotherapy is extensively used to 
treat cervical carcinomas. A single planning CT scan enables the 
calculation of the dose distribution. The treatment is delivered 
over 5 weeks. Large per-treatment anatomical variations may 
hamper the dose delivery, with the potential of an organs at risk 
(OAR) overdose and a tumor underdose. To anticipate these 
deformations, a recent approach proposed three planning CTs 
with variable bladder volumes, which had the limitation of not 
covering all per-treatment anatomical variations. An original 
patient-specific population-based library has been proposed. It 
consisted of generating two representative anatomies, in addition 
to the standard planning CT anatomy. First, the cervix and 
bladder meshes of a population of 20 patients (314 images) were 
registered to an anatomical template, using a deformable mesh 
registration. An iterative point-matching algorithm was developed 
based on local shape context (histogram of polar or cylindrical 
coordinates and geodesic distance to the base) and on a topology 
constraint filter. Second, a standard principal component analysis 
(PCA) model of the cervix and bladder was generated to extract 
the dominant deformation modes. Finally, specific deformations 
were obtained using posterior PCA models, with a constraint 
representing the top of the uterus deformation. For a new patient, 
the cervix-uterus and bladder were registered to the template, and 
the patient’s modeled planning library was built according to the 
model deformations. This method was applied following a leave-
one-patient-out cross-validation. The performances of the 
modeled library were compared to those of the three-CT-based 
library and showing an improvement in both target coverage and 
OAR sparing. 

Index Terms—radiotherapy, cervical, deformable mesh 
registration, PCA model, planning library 

I. INTRODUCTION 
XTERNAL beam radiotherapy (EBRT) with 
chemotherapy, followed by brachytherapy, is the reference 

treatment for locally advanced cervical carcinomas. EBRT is 
based on the acquisition of a single planning CT scan on which 
anatomical structures are manually delineated and from which 
the dose distribution is calculated. The clinical target volume 
(CTV) is defined as the cervical tumor, uterus, parametria and 
vagina according to initial staging, and pelvic lymph nodes. A 
planning target volume (PTV) is defined, corresponding to the 
CTV, with a fixed margin (generally of 10 mm). The organs at 
risk (OAR) are the bladder, rectum, and bowel, with the latter 
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including the sigmoid. The dose distribution is then optimized 
to deliver the prescribed dose to the PTV, while sparing as much 
as possible of the OAR. The treatment is delivered in daily 
fractions, over 5 weeks. On-board imaging, such as cone-beam 
CT (CBCT), enables the visualization of anatomical structures 
(cf. Fig. 1a). However, large anatomical variations may occur 
over treatment, such as bladder and rectum filling or tumor 
regression. The position of the uterus has been shown to be 
related to bladder volume: an empty bladder results in an 
anteriorly tipped uterus and a full bladder results in a vertical 
uterus [1, 2]. These deformations may, consequently, hamper 
the precision of the dose delivery since the per-treatment 
anatomy does not correspond to the planning anatomy (cf. Fig. 
2). The patient may be exposed to both tumor underdose and 
OAR overdose [3-5].  

Several strategies have previously been proposed to account 
for these anatomical variations. The simplest solution is to 
increase the size of the PTV by increasing the CTV-to-PTV 
margin. Another option is to define an internal target volume 
(ITV) that corresponds to the union of different CTVs from 
planning CT acquired with various bladder volumes. These two 
solutions limit the risk of CTV underdosage, yet carry the major 
drawback of increasing the dose delivered to the OAR [6-8]. 
Thus, recently, more sophisticated strategies, known as 
adaptive radiation therapy (ART), have been proposed. ART 
considers not only one treatment plan but multiple treatment 
plans, adapted to different anatomical configurations that 
anticipate per-treatment organ deformations. In EBRT for 
cervical cancer, the main ART strategy relies on the generation 
of a treatment planning library [7, 8]. This treatment planning 
library is composed of multiple treatment plans based on 
different anatomies (i.e., CTV shapes) resulting from planning 
CTs acquired with different bladder volumes (cf. Fig. 1b). The 
“classic” CT-based library is generally based on two or three 
anatomies (empty, intermediate and full bladder volume) in 
order to provide adequate coverage, while limiting the 
workload of the treatment plan optimization (one for each CT). 
At each treatment fraction, CBCT images enable the optimal 
treatment plan to be chosen among those of the library (“plan-
of-the-day”). This strategy appears to be adequate to 
compensate for uterine motions [9-11]. However, such a library 
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does not handle per-treatment deformations that are not 
represented in the planning CTs. In particular, this strategy is 
inefficient for patients with no motion at the planning and 
motion during treatment (cf. Fig. 2) [8]. Furthermore, compared 
to the standard treatment, the workload required to acquire and 
delineate the CT images is relatively heavy (i.e., 1 hour instead 
of 20 minutes for the whole acquisition procedure, and 1 hour 
30 minutes instead of 30 minutes for manual segmentation) 
while causing more discomfort to the patient (i.e., bladder 
filling protocol). 

One way to overcome these limitations would be to simulate 
the most likely deformations of the patient’s anatomy in order 
to improve the coverage of the target. For this purpose, a 

population analysis can be used to identify the main 
deformations. This population analysis needs the cervix-uterus 
of the different patients to be registered. This registration step 
is challenging due to the large intra-patient and all the more 
inter-patient variations. To our knowledge, only one study 
analyzed both intra and inter-patient deformations of the cervix-
uterus anatomy in the context of EBRT [12]. Based on CT 
images, the proposed approach used deformable registration 
and principal component analysis (PCA) to quantify the 
delivered dose uncertainties. 

The aim of this study was, based on a population analysis, to 
generate a patient-specific planning library (CTV and bladder) 
using a single CT scan of the considered patient (cf. Fig. 1c). 
First, a deformable mesh registration (DMR) method was used 
to quantify the population deformations within a template 
space. This DMR was based on the shape context descriptors 
using an iterative and multiscale approach. Second, standard 
and posterior principal component analysis (sPCA and pPCA) 
were used to build a statistical shape model (SSM) in the 
template space. By using different motion constraints 
associated with the top of the uterus, deformation vector fields 
(DVF) between the mean sPCA and pPCA models were 
generated. Finally, the DVFs were used to deform the patient 
CTV and bladder, thereby, generating the different shapes of 
the patient-specific library.  

This paper first describes the proposed workflow, including 
the DMR method, the sPCA and pPCA approaches and the 
method used to model a patient-specific library. This approach 
was then evaluated by comparing it with the standard RT and a 
three-CT-based planning library (i.e., “classic” library). The 
endpoints were the geometric coverages of the CTV and OAR 
by the PTV throughout the whole treatment. 

 
Fig. 1. Radiotherapy strategies for locally advanced cervical cancer 

In the standard RT approach (1a), the dose distribution is calculated based on one planning CT, generally with intermediate bladder volume, and the treatment 
is delivered in 25th fractions over 5 weeks. However, large per-treatment anatomical deformations, mainly due to the bladder filling and tumor shrinking, can be 
observed. These deformations may not be taken into account on the single planning CT, thereby exposing the patient to tumor underdose and organ at risk overdose. 
Three alternative strategies are represented: (1b) a classic library-based RT with three planning CTs (variable bladder volumes); (1c) the proposed modeled planning 
library based on the population analysis; and (1d) the combined library using (1b) and (1c). 
RT: Radiation therapy; PTV: Planning target volume; CTV: Clinical target volume 

 
Fig. 2. Classic CT-based planning library limitations 
 Two patients are illustrated. One patient had a moving CTV at the planning 
and during the treatment. The classic library appears to be adapted. Another 
patient had a non-moving CTV at the planning and a moving CTV during 
treatment, resulting in tumor underdose and OAR overdose when using the 
classic library.   

The CTV (cervix-uterus) is in pink. The rectum, bladder and bowel are in 
blue, green and yellow, respectively. The per-treatment CTV contours are in 
light blue. CTV: Clinical target volume; OAR: Organ at risk 
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II. METHODS 

A. Proposed Workflow 
The workflow of the model construction is presented in Fig. 

3. The first step was the population model construction. First, 
the meshes of the cervix-uterus (i.e., CTV) and the bladders of 
the patient population were aligned and normalized according 
to an anatomical template. Second, DVF between the template 
and the inter- and intra-patient shapes were obtained using 
DMR. Third, the sPCA was built over these shapes in 
correspondence to generate a SSM.  

Then, for a new patient’s shapes (CTV and bladder), 
normalization and DMR correspondences with the anatomical 
template were computed. According to the CTV shape of the 
new patient, motion constraints were generated over the top of 
the uterus of the sPCA mean shape in order to obtain the pPCA 
models.  

Finally, the new patient planning shapes (CTV and bladder) 
were deformed by means of the DVF between the standard and 
posterior mean shapes. This enabled the definition of several 
instances around the patient CTV and bladder shapes, which 
formed the planning library. 

Each of these steps is described here-after.  
 

B.  Template Selection and Shape Normalization  
A template shape (Stemp) was selected as the CTV, having the 

median volume of the database. To analyze the patients in a 
common space (i.e., scale and position), a shape normalization 
was first applied:  

 
𝑆"#$% 𝑥, 𝑦, 𝑧 =
+,- ./#0 12345 6,7,8 × 1 6,7,8 :;<3=2>?@A 6,7,8

+,- ./#0 1 6,7,8
 (1) 

 
Each patient’s CTV shapes, S(x, y, z), were size- and 

position-normalized. The size-normalization was based on the 
maximum of the geodesic distance (GeoD) to the base centroid 
of the planning CTV. The position-normalization was related to 
the CTV base centroid coordinates (Ccentroid(x, y, z)). Finally, 
each patient’s CTV shapes were size-normalized by the 
maximum GeoD of the template CTV. The maximum of the 
GeoD to the cervix centroid was also used to identify the 
position of the top of the uterus (ToU). The bladder shapes were 
normalized using the same transformations.  

 

C. Iterative Deformable Mesh Registration Based on Shape 
Context  

To quantify the population deformations, point-to-point 
correspondences of organ shapes had to be estimated. Shapes 
can be represented in a common domain using skeletal 
representation [13] or spherical harmonic decomposition [14, 
15], which can be limited for complex shapes. 

 More commonly, DMR methods have been introduced to 
estimate a DVF between two meshes. The DVF is generally 
estimated using local correspondences estimated by 
morphological descriptors. Shape context descriptors have been 
shown to be efficient for this purpose [16]. This method has 
been enriched with a depth feature [17] or filtered by a geodesic 
distance-based topology criterion [18] to improve its 
robustness. However, DMR based on a shape context descriptor 
still remains highly sensitive to point mismatch when computed 
in one step. Filtering and regularization may, therefore, be 
required to constrain the transformation and to ensure more 
realistic behavior [19]. Iterative DMR methods have been 
developed, such as surface-based algorithms, thin plate spline 
robust-point matching (TPS-RPM) [20-23] and coherent point 
drift (CPD) [24]. Nevertheless, these algorithms rely on point-
to-point distances to drive the DVF. They are, thus, dependent 

 
Fig. 3. Model workflow used to generate the modeled library 

The first step is the model construction: (1) the organ shapes are normalized to limit the observations to the uterus movement; (2) the DMR method is used to 
compute the correspondence fields between the template and the population shapes; and (3) the standard PCA is built over the shapes in correspondences to 
represent the dominant deformations. 

The second step is the library construction to apply the model to a new patient: (4) the organ shapes are propagated in the model space by means of the DMR 
method; (5) a posterior PCA is built to extract the desired deformation corresponding to the top of the uterus deformation; (6) the shapes are then warped by the 
deformation vector fields of the model; and (7) the warped shapes are denormalized to define the modeled planning library in the patient space.  
DMR: deformable mesh registration; PCA: principal component analysis 
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on the alignment of the shapes and ultimately may lead to 
uncertainties in inter-patient soft tissue matching when large 
deformations have to be estimated, without complex 
parametrization.  
 

The proposed DMR aims to estimate the forward DVF, 
representing the elastic transformation T between the fixed (i.e., 
the template) and the moving shapes (Sfixed, Smoving). The 
considered shapes are the cervix-uterus and the bladder, which 
are highly deformable organs. This iterative process is 
expressed by the following equations: 

 
𝐷𝑉𝐹 = 𝐷𝑉𝐹 + 𝐺(𝜇×𝐷𝑉𝐹IJ/K) (2) 
𝑆MN$K/O = 𝑇(𝑆%#QR"S, 𝐷𝑉𝐹) (3) 
 

At each iteration, the Smoving shape is warped (Swarped) by the 
DVF, which is updated by means of the DVFstep. The DVFstep is 
computed, at each iteration, between Sfixed and Swarped using a 
shape context descriptor [16] and the normalized geodesic 
distance to the centroid of the organ base, as described below. 
DVFstep is then interpolated and regularized by a thin plate 
spline (TPS) transformation and a Gaussian kernel (G), 
respectively, and is weighted by µ∈]0, 1] (µ=1 at the last 
iteration).  

The descriptors are calculated on Sfixed and Smoving, with each 
shape being represented by N points. For each point pi, a 
normalized histogram, hi, is defined, representing the spherical 
(resp. cylindrical) coordinate difference between this point and 
the remaining N−1 points of the shape. Thus, for each point of 
the bladder (resp. CTV), β×γ×δ=Nbins, histogram bins are 
defined, with β=5 for the radial distance (resp. x-y distance), 
γ=12 for the azimuth angle and δ=6 for the elevation angle 
(resp. z signed distance) with a range of [0, 100], [−180, 180], 
and [0, 180] (resp. [−100, 100]). The similarities between the 
points of Sfixed and Smoving are computed over a cost matrix, Chist, 
defined with the χ2 test statistic:  

 

𝐶URIJ 𝑝R, 𝑞X = Y
Z

U@ [ :U\ [
]

U@ [ ^U\ [
_[R"I
[`Y  (4) 

 
where hi(b) (resp. hj(b)) represents the bin b of the histogram of 
point pi (resp. qj) of Sfixed (resp. Smoving). 

The geodesic cost matrix Cgeo is also computed: 
 

𝐶S/# 𝑝R, 𝑞X = 𝐺𝑒𝑜𝐷cR6/O 𝑝R − 𝐺𝑒𝑜𝐷%#QR"S(𝑞X)  (5) 
  
where GeoDfixed(pi) (resp. GeoDmoving(qj)) represents the 
geodesic distance between pi (resp. qj) and the centroid of the 
base of Sfixed (resp. Smoving). 

A global cost matrix C is computed with the two weighted 
normalized cost matrices: 
 

𝐶e=?>4 𝑝R, 𝑞X =
;f K@,g\ :+hi ;f K@,g\

+,- ;f K@,g\ :+hi ;f K@,g\
 (6) 

 
where φ is either hist or geo to compute Chistnorm(pi,qj ) or 

Cgeonorm(pi,qj ), respectively. 
 
𝐶 𝑝R, 𝑞X = 𝛼×𝐶URIJ=?>4	

𝑝R, 𝑞X
+ 1 − 𝛼 ×𝐶S/#=?>4 𝑝R, 𝑞X 												

𝛼 ∈ 0,1  (7) 
  

To obtain the point-to-point correspondences between Sfixed 
and Smoving, the Hungarian optimization method was used on the 
C matrix [25]. The correspondences represent the vectors 
between Sfixed and Smoving, with the minimal cost value in terms 
of the histogram and geodesic descriptors. Similar to the 
method implemented by Xiao et al [18], in order to reduce the 
sensitivity of the shape descriptors, the correspondences that 
did not respect the following topological constraint were 
removed: 
 	

𝐷 𝑝R, 𝑝U
_"/RSU[
U`Y − 𝐷 𝑇(𝑝R), 𝑇(𝑝U)

_"/RSU[
U`Y < 𝜏×

𝐷 𝑝R, 𝑝U
_"qRSU[
U`Y  (8) 

 
where D(pi,ph) (resp. D[T(pi),T(ph)]) represents the Euclidean 
distance between the tested point pi and its neighbor ph (resp. 
the correspondences of the tested point pi and of its neighbor 
ph), over a total of Nneighb=8 points. This constraint enables 
the avoidance of large matching irregularities. The parameter τ 
is used as a relaxation factor to enable an increase in the number 
of correspondences driving the deformations.  

During the iterative process, Swarped becomes progressively 
closer to Sfixed, thus, the number of correspondences, as well as 
the non-linearity of the DVF, increase during the process. To 
improve the optimization, a multiresolution scheme is used that 
considers different factors of the Taubin filter [26]. For each 
resolution, Gaussian sigma and topological constraint 
thresholds (τ) can be defined. The process is stopped if the mean 
correspondence cost is greater than the previous one or if the 
DVFstep mean displacement difference between two iterations is 
less than a convergence threshold. 

 
Fig. 4. pPCA constraint definition 

The decision process involved in computing the pPCA mean shapes 
(Smean) of the new patient is illustrated for different cases. VC1 and VC2 
represent the resulting constraint vectors. The constraint vectors length and 
direction are dependent of the considered case. The cases are explained section 
II.E.2. The z-axis is pointing to the foot direction.  
sPCA: standard principal component analysis; pPCA: posterior PCA 
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D. Standard Principal Component Analysis  
Standard PCA (sPCA) enables the compression of large 

observations and the organization of the dominant information 
[27, 28]. Most studies expressed the dominant deformations of 
an organ by a compact sPCA model based on few eigenmodes. 
New samples can then be generated by a weighted sum of these 
eigenmodes [29, 30]. Following this, the generated shapes 
representing the dominant deformations can be combined to 
define an ITV [31] or to propose a model-generated PTV [32]. 
Recent studies used the ability of the model to generate random 
or systematic deformations prior to the treatment according to 
the training set observation. For example, random treatment 
planning scenarios have been generated to assess the dose 
coverage probability in cervical cancer [12]. The patient-
specific per-treatment bladder deformations have been 
predicted in a prostate cancer population [14]. Using early per-
treatment images of a patient, regularized PCA-based methods 
have also been proposed to anticipate systematic deformations 
[33].  

PCA-based models have, thus, been widely used for different 
applications; however, no study has proposed the use of PCA 
models to anticipate the clinical target deformations of a new 
patient in the emergent plan-of-the-day strategy for adaptive 
RT. 
 

sPCA was used to build a SSM and observe the dominant 
deformations of the population. A mean shape (Smean) was 
computed from the Nshapes input shapes (Si): 

 
𝑆%/N" =

Y
_IUNK/I

𝑆R
_IUNK/I
R`Y  (9) 

 
The Si shapes represent the inter- and intra-patient CTVs and 

bladders deformed toward the template anatomy by the DMR. 
The covariance matrix was computed to represent the linear 
combination of the shapes: 

 
Σ = Y

_IUNK/I
𝑆%/N" − 𝑆R (𝑆%/N" − 𝑆R)s

_IUNK/I
R`Y  (10) 

 
The covariance matrix was decomposed to extract the 

eigenvectors and the eigenvalues, which represent the dominant 
deformations and their variance, respectively:  

 
Σ = 𝑈𝐷Z𝑈s (11) 
 
where U and D2 represent the orthogonal eigenvectors and the 
corresponding eigenvalues, respectively. Each of the L modes 
can be scanned independently according to their variance 
(eigenvalue λl) in a range of ±3σ, from the larger deformations 
to the noisier.  

Any shape Sη can be expressed by the ranked model of l 
modes (l < L) with the following linear combination, following 
a normal law (𝒩(𝑆%/N", 𝛴)): 

 
𝑆w = 𝑆%/N" + 𝑈𝐷x (12) 
 
Every generated shape Sη has the same point indices than Smean, 
thus, a DVF can be computed by the difference of their 
coordinates.  
 

E. Patient Specific Modeled Planning Library 
The SSM, built by the sPCA over the population, was used 

to generate potential anatomies for a new patient, based on a 
single observation. For this purpose, posterior PCA were 
computed to apply constraints (displacement of the ToU) on the 
planning anatomy of the new patient. The resulting 
deformations were applied on this anatomy to build the 
modeled library, prior to treatment. 
 
1) Posterior Principal Component Analysis 

SSM has been used for shape reconstructions from partial 
information [34, 35]. The SSM was fitted on the known part of 
the shape and, thus, the missing part of the shape was 
reconstructed according to the instance of the model. 
Furthermore, posterior PCA has been introduced to represent a 
subset of sPCA with constraints on the known part of a given 
shape [36]. 

From the compact sPCA model (Smean, UDl), a pPCA model 
was generated based on a given constraint, Cg. The resulting 
pPCA, using Gaussian regression, represents the SCg mean 
shape and the submatrix UCgDCg. The SCg represents a new 
shape, that satisfies the local constraint Cg and with its 
remaining points interpolated. The submatrix UCgDCg 
represents the residual eigenvectors and the corresponding 

 
Fig. 6. Illustration of DMR MNND on the template shapes 

The MNND is illustrated on the anatomical template showing larger error 
on the salient local regions of the CTV and larger error on the top part of the 
bladder.  
CTV: Clinical target volume, MNND: mean nearest neighbour distance, 
DMR: deformable mesh registration 
 

 
Fig. 5. DMR examples  

Two different cases are illustrated. One simple case with similar CTV 
shapes and small deformations (except for the volume of the bladder) and one 
difficult case with different CTV shapes and large deformations. In both cases, 
the proposed DMR method generates a deformation vector field that warps the 
template shapes to the target patient shapes. 
CTV: Clinical target volume; DMR: deformable mesh registration 
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eigenvalues, which are not related to Cg. To express the 
uncertainty of Cg, a Gaussian noise (ε) is added.  

The pPCA formula to express any shape Sη, following a 
normal law (𝒩 𝑆;S, 𝛴;S ), is then: 

 
𝑆w = 𝑆;S + 𝑈;S𝐷;S x

+ 𝜀 	
𝜀~𝒩 0, 𝜎Z  (13) 
 
More detailed calculus and justifications are present in the study 
conducted by the Scalismo team [36], an open-access library 
for statistical shape analysis used for this study. 

 
2) Generation of the patient-specific constraint 

To generate two new shapes from the new patient’s anatomy 
using the pPCA, two constraints have to be defined. They were 
made of two vectors (VC1 and VC2 in mm) applied to the ToU. 
The ToU point was automatically localized using the geodesic 
distance to the base centroid (cf. section II.B., eq. (1)). Each 
constraint was defined according to the signed z-axis distance 
between the ToU positions of the new patient (ToUnew) and of 
the mean shape of the sPCA (ToUSmean): 

 
𝐷 = 𝑇𝑜𝑈"/M(𝑧) − 𝑇𝑜𝑈143|=(𝑧) (14) 
 
The CTV deformations were analyzed, inside the sPCA space, 
by a clinical expert to define the mean cervix-uterus shape in a 
vertical (head direction) and horizontal position (foot 
direction). From this analysis, the resulting constraint amplitude 
of the ToUSmean, was defined by: γ = ⟨0, 15, 15⟩ mm. 
Considering the position of ToUnew relatively to ToUSmean, three 
cases were considered, based on D, to generate VC1 and VC2 (cf. 
Fig. 4): 
 

• Case 1, 𝑖𝑓	 :�(�)
Z

< 𝐷 < �(�)
Z
	 

𝑡ℎ𝑒𝑛	
𝑉;Y 𝑥, 𝑦, 𝑧 = ⟨0, γ(y), γ(z) − 𝐷⟩

𝑉;Z 𝑥, 𝑦, 𝑧 = ⟨0, −γ(y), −γ(z) − 𝐷⟩	  (15) 

• Case 2, 𝑖𝑓	𝐷 < :�(�)
Z

  

𝑡ℎ𝑒𝑛	
𝑉;Y 𝑥, 𝑦, 𝑧 = ⟨0, γ(y), γ(z) − 𝐷⟩

𝑉;Z 𝑥, 𝑦, 𝑧 = ��� 6,7,8
Z

	    (16) 

• Case 3, 𝑖𝑓	𝐷 > � �
Z
	 

𝑡ℎ𝑒𝑛	
𝑉;Z 𝑥, 𝑦, 𝑧 = ⟨0, −γ(y), −γ(z) − 𝐷⟩

𝑉;Y 𝑥, 𝑦, 𝑧 = ��] 6,7,8
Z

	  (17) 

 
The two defined constraints enabled the computation of two 

pPCA mean shapes and their eigenvectors (cf. section II.E.1). 
The two DVFs between each pPCA and the sPCA on the CTV 
and bladder mean shapes were extracted. Finally, the new 
patient’s planning CTV and bladder were deformed by these 
DVFs.  

Due to the difference in the bladder shapes and volumes 
among the patients, a basic representation of the bladder mean 
shape of the population may lead to unsatisfying bladder DVFs. 
Indeed, the initial bladder of the patient may be larger or smaller 
than the population mean bladder. Thus, the bladder DVF from 
the model can be improper in term of amplitude (i.e., resulting 
in uterus-bladder overlap for large initial bladder or unrealistic 
deformations for small initial bladder). To correct this, a ratio 
was applied on the DVF amplitude corresponding to the 
difference between the position of the top of the bladder of each 
shape (patient and sPCA bladder shapes). Moreover, the 
deformed bladder was iteratively smoothed and deflated, where 
the local uterus-bladder overlap occurs, following the inverse 
of the vertex normal. 

After the denormalization of the deformed shapes, the 
pretreatment library, containing the two modeled CTVs and 
bladders shapes and the patient original planning CT anatomy, 
was obtained.  

III. EVALUATION 

A. Dataset 
The method was evaluated on a total of 20 subjects. Each 

underwent three planning CTs with different bladder volumes 

Fig. 7. Three main modes of deformation of the standard principal components 
analysis  

The three main modes of deformation of the cervix-uterus/bladder 
population sPCA are represented. Mode 1 can be interpreted as a 
superior/inferior deformation of the uterus with a large variation in the bladder 
volume. Modes 2 and 3 correspond to an ante-posterior shrinking and a left-
right rotation on the Y-axis of the anatomical structures, respectively. 
PCA: principal component analysis; σ2

x: variance of the xth mode (eigenvalue) 
 

TABLE I 

Metric 

Methods 

RR DMR 

CTV Bladder CTV Bladder 

MNND 
(mm) 

12.0 
(5.5 – 22.3) 

10.0 
(6.6 – 19.2) 

0.5 * 
(0.3 – 0.7) 

0.5 * 
(0.3 – 0.8) 

HD 
(mm) 

41.1 
(19.0 – 64.6) 

51.7 
(31.2 – 70.6) 

3.3 * 
(2.5 – 4.2) 

3.1 * 
(2.1 – 4.4) 

DSC 0.39 
(0.22 – 0.67) 

0.39 
(0.16 – 0.67) 

0.98 * 
(0.94 – 0.99) 

0.99 * 
(0.97 – 1.0) 

ICE (mm) / / 5.7 (3.2 – 7.7) 3.8 (1.9 – 6.3) 

The table represents the mean (min – max) values over all patients for each 
method and organ. * indicates a p-value < 0.001 for the Wilcoxon test 
comparing DMR with RR. MNND: Mean nearest neighbor distance; HD: 
Hausdorff distance; DSC: Dice similarity coefficient; ICE: inverse consistency 
error; CTV: Clinical target volume  
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(empty, intermediate, and full) and, at least, bi-weekly CBCTs 
during the 5 weeks of treatment (total 314 images). The CTV, 
including the cervix and uterus, and the OARs (rectum, bladder, 
and bowel) were delineated by the same expert on CT and 
CBCT images. The surfaces of the delineations were smoothed 
using Taubin filter [26], decimated and remeshed using the 
approximated centroidal Voronoi diagrams (ACVD) method 
[37], resulting in smooth meshes of 1500 equidistant points. 

 The experiments were performed following a leave-one-
patient-out cross-validation. A PCA-based model was defined 
for each patient using the 19 other patients for the training set.  

Considering the iterative DMR, the following parameters 
were empirically selected: 3 resolutions of smoothing (Taubin 
filter passband=[0.01, 0.1, 1]); cost matrix weight factor α=0.5; 
Gaussian sigma σ=[4,2,1]; step update factor µ=0.25; and 
topology constraint threshold τ=[0.25, 0.5, 1].  

In order to keep the dominant information from the training 
set and to filter out the noisy deformations (i.e., resulting from 
DMR uncertainties or intra-observer delineation variations), a 
rank threshold of 10% was therefore considered for the sPCA 
(cf. section III.E.). Thus, the pPCA models were defined on 
10% of the sPCA first modes.  

The proposed DMR method was developed using the VTK 
library. Statistical shape analysis was performed using the 
Scalismo library. A non-parametric test (paired Wilcoxon test) 
was used to compare the performance of the strategies and to 
assess if a strategy was statistically different from another. The 
R software was used for this purpose. 

 

B. Simulation of Treatment Delivery 
As considered in clinical routine, for each CTV (either 

resulting from the CTs segmentation or from the model), a PTV 
was generated by adding an isotropic margin. To simulate 
patient positioning during treatment delivery, all the CBCTs 
were bone-registered with the planning CT (intermediate 
bladder). For the standard RT, only the PTV with intermediate 
bladder volume was used to simulate the treatment. For the 
library-based strategies, multiple PTV (3 or 5, cf. Fig. 1) were 
available for each treatment fraction. The PTV selected for each 
CBCT was the one providing the maximum coverage with the 
CTV delineated on the CBCT. In the event of equal overlap by 
multiple PTVs, the PTV with the lowest volume was selected. 

The modeled planning library was evaluated and compared 
against the standard RT (based on the intermediate bladder 
volume CT) and the three-CT-based planning library, 
including, for each patient, the shapes of the three planning CTs 
(empty, intermediate and full bladder volumes). A combined 
library, including the three-CT-based and modeled library 
shapes, totaling 5 shapes, was also evaluated (cf. Fig 1d). 

 

C. Evaluation of the Treatment Strategies 
  The criterion used to assess the best strategy was the 
coverage of the volumes of interest (CTV and OAR) by the 
PTV. The “coverage of the organ by the PTV” was computed 
as the intersection between the selected PTV and the structure 
delineation, normalized according to the structure volume. This 
coverage criterion represented the ability of the considered 
strategy to cover the target or to spare the organs at risk for each 

 
Fig. 9. CTV and OAR coverage by the PTV with various margins for all 
strategies 

The colors represent the RT strategies, and the x-axis represents the PTV 
margins (0, 7, and 10 mm). The filled bars represent the mean values of the 
population (with one value per patient, corresponding to the mean coverage 
over the treatment), and the black lines represent the min and max values. The 
optimal treatment corresponds to a high CTV coverage and a low OAR 
coverage. The red dashed lines represent 95% and 98% CTV coverage by the 
PTV, respectively.  
CTV: Clinical target volume; OAR: Organs at risk (bladder, rectum and 
bowel); PTV: Planning target volume; RT: Radiation therapy 
 

 
(a) 

 
(b) 

Fig. 8. Standard PCA performance of the two shapes in all ranks by 
considering: (a) the DSC and (b) the MNND 

The multi-organ PCA performances are illustrated for all tested modes 
using leave-one-patient-out cross-validation.  
PCA: Principal component analysis; DSC: Dice similarity coefficient; 
MNND: Mean nearest neighbour distance 
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treatment fraction and, thus, of its ability to anticipate the 
deformations. For each patient, the coverages of the volumes of 
interest were averaged by the number of fractions (i.e., CBCTs) 
to represent the whole treatment. 

All the strategies were tested with 0 mm, 7 mm and 10 mm 
PTV margins (i.e., isotropic dilatation of the CTV to generate 
the PTV). The 0 mm PTV margin, if clinically unrealistic, was 
considered to assess the coverage of the organs provided by the 
geometrical model only. 

 

D. Deformable Mesh Registration Performance  
Fig. 5 illustrates two cases of estimated deformation, namely 

simple and difficult, based on the similarity between the 
template and a patient.  

Fig. 6 represents the mean nearest neighbor distance 
(MNND) on the template shapes after DMR. The largest errors 
were located on the salient local regions of the CTV and on the 
top part of the bladder.  

Table 1 represents the rigid registration (RR, section II.B.), 
and DMR performances using the following metrics: MNND, 
Hausdorff distance (HD), Dice similarity coefficient (DSC) and 
inverse consistency error (ICE). Compared to the RR, the DMR 
performances were significantly better.  

 

E. Principal Component Analysis 
The sPCA-based model was cross-validated using a leave-

one-patient-out procedure across the 20 subjects.  
Fig. 7 represents the three main modes of deformation of the 

cervix-uterus/bladder sPCA. The first mode can be interpreted 
as the top of the uterus displacement according to the bladder 
filling. The second and third modes correspond to an ante-
posterior shrinking and a left-right rotation on the Y-axis of the 
shapes, respectively.  

 Fig. 8ab represents the DSC and MNND for each organ as a 
function of the sPCA modes, and thus, the ability of the sPCA 
to explain the inter- and intra-patient variation with a given 
number of modes. The Fig. 8ab illustrates, thus, the 
generalization ability of the models to represent unseen shapes 
in the training set (i.e., following leave-one-patient-out cross 
validation) [38]. At a 10% rank, the DSC and MNND were 0.85 
(0.79 - 0.88) and 3.0 mm (2.2 – 3.8) for the cervix-uterus and 

0.86 (0.79 - 0.92) and 2.7 mm (1.9 – 3.6) for the bladder, 
respectively. At this rank, 90% of the maximum DSC was 
reached for each organ. 

   

F. Modeled library 
Fig. 9 represents the strategy performances in terms of the 

CTV and OAR coverage by the PTV, for each margin value.  
Considering the CTV coverage by the PTV, compared to the 

standard RT, all strategies significantly increased the coverage 
(p<0.001). Compared the standard RT, the modeled library was 
beneficial for 75% of the patients (with no impact for the other). 
The modeled library had similar performances compared to the 
three-CT-based library (p=0.95).  

Importantly, considering a 10 mm PTV margin, the minimal 
value of the CTV coverage increased from 73.2% with the 
three-CT-based library to 92.1% with the modeled libraries. 
Also, the combined library significantly increased the CTV 
coverage, compared to all strategies: +3.6% compared to the 
standard RT (p<0.001); +1.7% compared to the three-CT-based 
library (p<0.001) and +0.7% compared to the modeled library 
(p<0.001). 

Comparing the modeled library with the classic library at 10 
mm PTV margin, 20% of the patients had an increase of CTV 
coverage superior to 1% (up to 21.3%) while 10% had a 
decrease superior to 1% (up to 4%). By combining the two 
libraries, 25% of the patients had an increase of the CTV 
coverage superior to 1% (up to 21.3%) and none had a decrease. 

Considering the OAR coverage by the PTV, the modeled 
library significantly increased the sparing of the rectum (-6%, 
p<0.001) compared to the three-CT-based library. The modeled 
and combined libraries increased the sparing of the bowel (-
0.3% and -0.8% [eq. 1.2 cc and 2.4 cc], p=0.08 and p<0.001). 
However, the modeled and combined library significantly over-
covered the bladder (+2.4% and +1.5%; p<0.001).  

Considering the impact of the PTV margins on CTV 
coverage, an improvement of approximately 25% was observed 
by increasing the margin from 0 to 7 mm and of 5% from 7 to 
10 mm. Concerning the impact of the PTV margins on the 
OAR, an impairment of 15% was observed by increasing the 
margin from 0 to 7 mm and of 10% from 7 to 10 mm for the 
rectum and bladder. In total, if the use of adaptive strategies will 
enable to reduce the margins, their choice remains crucial. 

Fig. 10 represents the frequency of fractions for which the 
plans were used, according to the strategy and for each 
individual. Considering the modeled library, the modeled plans 
were used at least once for 75% of the patients. Considering all 
the available plans using the combined library, the modeled 
plans were used at least once for 60% of the patients. 

 
Fig. 10. Selected PTV during the treatment of each patient.  

The y-axis represents the frequency of the PTV selected during the 
treatment simulations. The colors represent the different PTV. The x-axis 
represents the patient identifiers. Each facet represents a strategy with a PTV 
margin (0, 7, and 10 mm). PTV: Planning target volume; 
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Fig. 11 illustrates each strategy for two different patients: the 
first one (upper row), had a moving uterus at the planning and 
during the treatment; the second one had a non-moving uterus 
at the planning, which became mover during the treatment. For 
the first patient, both libraries performed similarly. However, 
for the second patient, the modeled library better anticipated the 
deformations than the three-CT-based library. Indeed, before 
treatment, the tumor may prevent the uterus from moving, 
whereas during treatment, the tumor shrinks and then lets the 
uterus move.  

In terms of computation time, the proposed approach 
simulates the two modeled CTs in less than 3 minutes per 
patient (approximately 1 minute per organ for the DMR and 1 
minute for the pPCA-based models). Compared to the three-
CT-based library, only the combined library would increase the 
workload in term of treatment plan optimization. 
 

IV. DISCUSSION AND CONCLUSION 
 We have proposed a workflow that models a planning library 
by taking into account population deformations. This workflow 
relies on two steps. First, a DMR method was proposed to 
compute the inter-patient cervix-uterus and bladder 
correspondences. Second, a SSM was built to deform the 
specific-patient anatomy to generate a modeled library. 

This study has several limitations. First, the DMR 
performance was only evaluated considering geometric metrics 
and not using fiducial markers or manually placed landmarks. 
Landmark positioning appears, however, difficult on pelvic 
anatomy, and a numerical phantom could have been used as 

reported when considering prostate cancer [39]. The ICE were 
larger than the ones reported in the literature using symmetric 
registration methods [12, 20] due to the fact that our method 
computes the DVF in only one direction (i.e., forward). Still, 
the proposed method provides the smallest reported ICE of the 
non-symmetrical registration method [20] (cf. Table 1). 

Second, the statistical shape analysis was done by mixing 
both intra- and inter-patient deformations, without taking the 
patient’s deformations among the population specifically into 
account. One proposed solution would be to consider the inter-
fractions average shape per patient [40]. To overcome this 
shortcoming, the population was normalized according to a 
common space, limiting the deformation analysis on the uterus. 
Moreover, the model deformation vector fields were applied on 
the specific patient’s planning anatomy.  

Finally, the modeled planning library performance was 
assessed using only a geometric criterion, instead of dosimetric 
criteria that are more important in a clinical perspective. The 
workload implied by dose optimization and calculation prevent 
the exhaustive dosimetric evaluation of new strategies. 
Moreover, a previous study has shown a good agreement 
between geometric and dosimetric criteria for cervical cancer 
patients [8]. In the end, the clinical benefits of such complex 
strategies will have to be evaluated on a larger cohort.  

The modeled and combined libraries performed similarly or 
better than a standard RT or classic CT-based library. In 
particular, the coverage of the target was largely improved for 
patients with non-moving CTV at the planning. Moreover, the 
proposed modeled approach reduces the need for the heavy 
three-CT-acquisition protocol. The use of the proposed 

 

 
Fig. 11. Example of the RT strategies used for two different patients  

The patient on the first row has a moving uterus prior to and during the treatment. The patient on the second row has a non-moving uterus prior to the treatment 
and moving uterus during the treatment. For the latter, the modeled planning library has the ability to anticipate per-treatment deformations, while the three-CT-
based library shows low uterus movements. The four strategies are illustrated. The standard RT CTV (first column) is in white. The CTVs of the “classic” three-
CT-based library (second column) are in white, dark blue and green. The CTVs of the patient-specific modeled library (third column) are in white, pink and yellow. 
The CTVs of the combined library (fourth column) are in white, dark blue, green, yellow and pink. The per-treatment CTV contours are in light blue.  

In this particular order, the CTV coverages by the 10 mm PTV of the patient of the first row were 84.8%, 92.0%, 92.1% and 93.1%. The CTV coverages by the 
10 mm PTV of the patient of the second row were 70.9%, 73.2%, 94.5% and 94.5%. 
CTV: Clinical target volume 
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combined library, including the modeled shapes, would 
increase the workload of the physicist at the planning (2h per 
plan optimization). However, the need for adaptive strategies, 
based on the generation of multiple treatment plans, is largely 
accepted and some clinical tools, such as automatic planning 
tools [41], may ease their clinical implementation. Two 
ongoing clinical trials based on the use of the planning library 
showed that 3 to 15 min is required to select the plan-of-the-day 
at each treatment fraction [10, 42].  

The perspective of this work is to compute planning doses 
with the modeled shapes on a water-air-bone pseudo-CT to 
dosimetrically confirm the results. The proposed method can be 
derived to evaluate similar adaptive strategies for bladder and 
rectal cancers.  
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