R. Jadon, C. Pembroke, and C. Hanna, A systematic review of organ motion and image-guided strategies in external beam radiotherapy for cervical cancer, Clinical Oncology, vol.26, issue.4, pp.185-196, 2014.

R. Ahmad, M. S. Hoogeman, and M. Bondar, Increasing treatment accuracy for cervical cancer patients using correlations between bladder-filling change and cervix-uterus displacements: proof of principle, Radiotherapy and oncology, vol.98, issue.3, pp.340-346, 2011.

Y. Han, E. H. Shin, and S. J. Huh, Interfractional dose variation during intensity-modulated radiation therapy for cervical cancer assessed by weekly CT evaluation, International Journal of Radiation Oncology* Biology* Physics, vol.65, issue.2, pp.617-623, 2006.

A. Buchali, S. Koswig, and S. Dinges, Impact of the filling status of the bladder and rectum on their integral dose distribution and the movement of the uterus in the treatment planning of gynaecological cancer, Radiotherapy and oncology, vol.52, issue.1, pp.29-34, 1999.

L. Van-de-bunt, I. M. Jürgenliemk-schulz, and G. A. De-kort, Motion and deformation of the target volumes during IMRT for cervical cancer: what margins do we need?, Radiotherapy and Oncology, vol.88, issue.2, pp.233-240, 2008.

Y. Seppenwoolde, M. Stock, and M. Buschmann, Impact of organ shape variations on margin concepts for cervix cancer ART, Radiotherapy and Oncology, 2016.

M. Bondar, M. Hoogeman, and J. Mens, Individualized nonadaptive and online-adaptive intensity-modulated radiotherapy treatment strategies for cervical cancer patients based on pretreatment acquired variable bladder filling computed tomography scans, International Journal of Radiation Oncology* Biology* Physics, vol.83, issue.5, pp.1617-1623, 2012.

B. Rigaud, A. Simon, and M. Gobeli, CBCT-guided evolutive library for cervical adaptive IMRT, Medical Physics, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01771532

M. Gobeli, A. Simon, and M. Getain, Benefit of a pretreatment planning library-based adaptive radiotherapy for cervix carcinoma?, Cancer radiotherapie, vol.19, issue.6-7, pp.471-478, 2015.

S. T. Heijkoop, T. R. Langerak, and S. Quint, Clinical implementation of an online adaptive planof-the-day protocol for nonrigid motion management in locally advanced cervical cancer IMRT, Int. J. Radiat. Oncol. Biol. Phys, vol.90, issue.3, pp.673-679, 2014.

A. J. Van-de-schoot, P. Boer, and J. Visser, Dosimetric advantages of a clinical daily adaptive plan selection strategy compared with a non-adaptive strategy in cervical cancer radiation therapy, Acta Oncologica, vol.56, issue.5, pp.667-674, 2017.

D. Tilly, A. J. Van-de-schoot, and E. Grusell, Dose coverage calculation using a statistical shape modelapplied to cervical cancer radiotherapy, Physics in Medicine and Biology, vol.62, issue.10, p.4140, 2017.

L. Tu, M. Styner, and J. Vicory, Skeletal Shape Correspondence Through Entropy, IEEE Transactions on Medical Imaging, vol.37, issue.1, pp.1-11, 2018.
DOI : 10.1109/tmi.2017.2755550

URL : http://europepmc.org/articles/pmc5943061?pdf=render

R. Rios, R. De-crevoisier, and J. D. Ospina, Population model of bladder motion and deformation based on dominant eigenmodes and mixed-effects models in prostate cancer radiotherapy, Medical image analysis, vol.38, pp.133-149, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01518411

A. Kelemen, G. Székely, and G. Gerig, Elastic model-based segmentation of 3-D neuroradiological data sets, IEEE Transactions on medical imaging, vol.18, issue.10, pp.828-839, 1999.

S. Belongie, J. Malik, and J. Puzicha, Shape matching and object recognition using shape contexts, IEEE transactions on pattern analysis and machine intelligence, vol.24, issue.4, pp.509-522, 2002.

O. Acosta, J. Fripp, and V. Doré, Cortical surface mapping using topology correction, partial flattening and 3D shape context-based non-rigid registration for use in quantifying atrophy in Alzheimer's disease, Journal of Neuroscience Methods, vol.205, issue.1, pp.96-109, 2012.

D. Xiao, D. Zahra, and P. Bourgeat, An improved 3D shape context based non-rigid registration method and its application to small animal skeletons registration, Computerized Medical Imaging and Graphics, vol.34, issue.4, pp.321-332, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00910207

J. Ruhaak, T. Polzin, and S. Heldmann, Estimation of Large Motion in Lung CT by Integrating Regularized Keypoint Correspondences into Dense Deformable Registration, IEEE Transactions on Medical Imaging, 2017.

L. Bondar, M. S. Hoogeman, and E. M. Osorio, A symmetric nonrigid registration method to handle large organ deformations in cervical cancer patients, Medical physics, vol.37, issue.7, pp.3760-3772, 2010.

J. Yang, The thin plate spline robust point matching (TPS-RPM) algorithm: A revisit, Pattern Recognition Letters, vol.32, issue.7, pp.910-918, 2011.

H. Chui and A. Rangarajan, A new point matching algorithm for non-rigid registration, Computer Vision and Image Understanding, vol.89, issue.2, pp.114-141, 2003.
DOI : 10.1016/s1077-3142(03)00009-2

E. M. Osorio, I. K. Kolkman-deurloo, and M. Schuring-pereira, Improving anatomical mapping of complexly deformed anatomy for external beam radiotherapy and brachytherapy dose accumulation in cervical cancer, Medical physics, vol.42, issue.1, pp.206-220, 2015.

A. Myronenko and X. Song, Point set registration: Coherent point drift, IEEE transactions on pattern analysis and machine intelligence, vol.32, pp.2262-2275, 2010.
DOI : 10.1109/tpami.2010.46

URL : http://arxiv.org/pdf/0905.2635

R. Jonker and A. Volgenant, A shortest augmenting path algorithm for dense and sparse linear assignment problems, Computing, vol.38, issue.4, pp.325-340, 1987.

G. Taubin, T. Zhang, and G. Golub, Optimal surface smoothing as filter design, Computer Vision-ECCV'96, pp.283-292, 1996.
DOI : 10.1007/bfb0015544

J. E. Jackson, A user's guide to principal components, 2005.

J. J. Cerrolaza, R. M. Summers, and M. G. Linguraru, Soft Multi-organ Shape Models via Generalized PCA: A General Framework, pp.219-228
DOI : 10.1007/978-3-319-46726-9_26

M. Söhn, M. Birkner, and D. Yan, Modelling individual geometric variation based on dominant eigenmodes of organ deformation: implementation and evaluation, Physics in Medicine and Biology, vol.50, issue.24, p.5893, 2005.

E. Brion, C. Richterb, and B. Macqa, Modeling patterns of anatomical deformations in prostate patients undergoing radiation therapy with an endorectal balloon, pp.1013506-1013506

S. Thörnqvist, L. B. Hysing, and A. G. Zolnay, Adaptive radiotherapy in locally advanced prostate cancer using a statistical deformable motion model, Acta Oncologica, vol.52, issue.7, pp.1423-1429, 2013.

L. Bondar, M. Intven, and J. M. Burbach, Statistical Modeling of CTV Motion and Deformation for IMRT of Early-Stage Rectal Cancer, International Journal of Radiation Oncology* Biology* Physics, vol.90, issue.3, pp.664-672, 2014.

M. A. Chetvertkov, F. Siddiqui, and J. Kim, Use of regularized principal component analysis to model anatomical changes during head and neck radiation therapy for treatment adaptation and response assessment, Medical physics, vol.43, issue.10, pp.5307-5319, 2016.

S. I. Buchaillard, S. H. Ong, and Y. Payan, 3D statistical models for tooth surface reconstruction, Computers in Biology and Medicine, vol.37, issue.10, pp.1461-1471, 2007.
DOI : 10.1016/j.compbiomed.2007.01.003

URL : https://hal.archives-ouvertes.fr/hal-00169766

S. Poltaretskyi, J. Chaoui, and M. Mayya, Prediction of the pre-morbid 3D anatomy of the proximal humerus based on statistical shape modelling, Bone Joint J, vol.99, issue.7, pp.927-933, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01600036

T. Albrecht, M. Lüthi, and T. Gerig, Posterior shape models, Medical image analysis, vol.17, issue.8, pp.959-973, 2013.
DOI : 10.1016/j.media.2013.05.010

S. Valette, J. M. Chassery, and R. Prost, Generic remeshing of 3D triangular meshes with metricdependent discrete Voronoi diagrams, IEEE Transactions on Visualization and Computer Graphics, vol.14, issue.2, pp.369-381, 2008.
DOI : 10.1109/tvcg.2007.70430

URL : https://hal.archives-ouvertes.fr/hal-00537025

M. A. Styner, K. T. Rajamani, and L. Nolte, Evaluation of 3D correspondence methods for model building, pp.63-75

G. Cazoulat, A. Simon, and A. , Surfaceconstrained nonrigid registration for dose monitoring in prostate cancer radiotherapy, IEEE Transactions on Medical Imaging, vol.33, issue.7, pp.1464-1474, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-00978107

E. Budiarto, M. Keijzer, and P. Storchi, A population-based model to describe geometrical uncertainties in radiotherapy: applied to prostate cases, Physics in medicine and biology, vol.56, issue.4, p.1045, 2011.

A. W. Sharfo, S. Breedveld, and P. W. Voet, Validation of fully automated VMAT plan generation for library-based plan-of-the-day cervical cancer radiotherapy, PloS one, vol.11, issue.12, p.169202, 2016.

M. Buschmann, K. Majercakova, and A. Sturdza, Image guided adaptive external beam radiation therapy for cervix cancer: Evaluation of a clinically implemented plan-of-the-day technique, Zeitschrift für Medizinische Physik, 2017.