Modulation of Bacterial sRNAs Activity by Epigenetic Modifications Inputs from the Eukaryotic miRNAs - Archive ouverte HAL Access content directly
Journal Articles Genes Year : 2019

Modulation of Bacterial sRNAs Activity by Epigenetic Modifications Inputs from the Eukaryotic miRNAs

David Gilot

Abstract

Trans-encoded bacterial regulatory RNAs (sRNAs) are functional analogues of eukaryotic microRNAs (miRNAs). These RNA classes act by base-pairing complementarity with their RNA targets to modulate gene expression (transcription, half-life and/or translation). Based on base-pairing, algorithms predict binding and the impact of small RNAs on targeted-RNAs expression and fate. However, other actors are involved such as RNA binding proteins and epigenetic modifications of the targeted and small RNAs. Post-transcriptional base modifications are widespread in all living organisms where they lower undesired RNA folds through conformation adjustments and influence RNA pairing and stability, especially if remodeling their ends. In bacteria, sRNAs possess RNA modifications either internally (methylation, pseudouridinylation) or at their ends. Nicotinamide adenine dinucleotide were detected at 5'-ends, and polyadenylation can occur at 3'-ends. Eukaryotic miRNAs possess N⁶-methyladenosine (m⁶A), A editing into I, and non-templated addition of uridines at their 3'-ends. Biological functions and enzymes involved in those sRNA and micro RNA epigenetic modifications, when known, are presented and challenged.
Fichier principal
Vignette du fichier
genes-10-00022.pdf (1.59 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01993659 , version 1 (12-07-2019)

Identifiers

Cite

Brice Felden, David Gilot. Modulation of Bacterial sRNAs Activity by Epigenetic Modifications Inputs from the Eukaryotic miRNAs. Genes, 2019, 10 (1), pp.22. ⟨10.3390/genes10010022⟩. ⟨hal-01993659⟩
53 View
61 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More