K. V. Prasanth and D. L. Spector, Eukaryotic regulatory RNAs: an answer to the 'genome complexity' conundrum. Genes Dev, vol.21, pp.11-42, 2007.

D. R. Gelsinger and J. Diruggiero, Transcriptional Landscape and Regulatory Roles of Small Noncoding RNAs in the Oxidative Stress Response of the Haloarchaeon Haloferax volcanii, J Bacteriol, pp.779-796, 0200.

L. S. Waters and G. Storz, Regulatory RNAs in bacteria, Cell, vol.136, pp.615-628, 2009.

D. P. Bartel and . Metazoan, Cell, vol.173, pp.20-51, 2018.

J. Georg and W. R. Hess, cis-antisense RNA, another level of gene regulation in bacteria, Microbiol Mol Biol Rev, vol.75, pp.286-300, 2011.

M. Helm and Y. Motorin, Detecting RNA modifications in the epitranscriptome: predict and validate, Nat Rev Genet, vol.18, pp.275-291, 2017.

E. G. Wagner and P. Romby, Small RNAs in bacteria and archaea, Advances in Genetics, pp.133-208, 2015.

X. Zhao, Y. Zhang, and X. Huang, Pathogenicity-island-encoded regulatory RNAs regulate bacterial virulence and pathogenesis, Microb. Pathog, vol.125, pp.196-204, 2018.

B. Felden and V. Cattoir, Bacterial adaptation to antibiotics through regulatory RNAs, Antimicrob. Agents Chemother, vol.62, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01764887

M. Carrier, D. Lalaouna, and E. Massé, Broadening the definition of bacterial small RNAs: Characteristics and mechanisms of action, Annu. Rev. Microbiol, vol.72, pp.141-161, 2018.

A. Santiago-frangos and S. A. Woodson, Hfq chaperone brings speed dating to bacterial sRNA, Wiley interdisciplinary reviews. RNA, vol.9, 1475.

Y. Kim, B. Kim, and V. N. Kim, Re-evaluation of the roles of DROSHA, Exportin 5, and DICER in microRNA biogenesis, Proc. Natl. Acad. Sci, vol.113, pp.1881-1889, 2016.

J. Winter, S. Jung, S. Keller, R. I. Gregory, and S. Diederichs, Many roads to maturity: microRNA biogenesis pathways and their regulation, Nat. Cell Biol, vol.11, pp.228-234, 2009.

Y. Wang, S. Juranek, H. Li, G. Sheng, G. S. Wardle et al., Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes, Nature, vol.461, pp.754-761, 2009.

S. L. Ameres and P. D. Zamore, Diversifying microRNA sequence and function, Nature reviews. Mol. Cell Biol, vol.14, pp.475-488, 2013.

V. Agarwal, G. W. Bell, J. Nam, and D. P. Bartel, Predicting effective microRNA target sites in mammalian mRNAs

H. Seok, J. Ham, E. Jang, and S. W. Chi, MicroRNA target recognition: Insights from transcriptome-wide non-canonical interactions, Mol. Cells, vol.39, pp.375-381, 2016.

A. Helwak, G. Kudla, T. Dudnakova, and D. Tollervey, Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding, Cell, vol.153, pp.654-665, 2013.

M. Khorshid, J. Hausser, M. Zavolan, and E. Van-nimwegen, A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets, Nat. Methods, vol.10, pp.253-255, 2013.

G. B. Loeb, A. A. Khan, D. Canner, J. B. Hiatt, J. Shendure et al., Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting, Mol. Cell, vol.48, pp.760-770, 2012.

D. Kim, Y. M. Sung, J. Park, S. Kim, J. Kim et al., General rules for functional microRNA targeting, Nat. Genet, vol.48, pp.1517-1526, 2016.

L. Salmena, L. Poliseno, Y. Tay, L. Kats, and P. P. Pandolfi, A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell, vol.146, pp.353-358, 2011.

Y. Tay, J. Rinn, and P. P. Pandolfi, The multilayered complexity of ceRNA crosstalk and competition, Nature, vol.505, pp.344-352, 2014.

S. W. Chi, J. B. Zang, A. Mele, and R. B. Darnell, Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps, Nature, vol.460, pp.479-486, 2009.

P. Huter, C. Müller, S. Arenz, B. Beckert, and D. N. Wilson, Structural basis for ribosome rescue in bacteria, Trends Biochem. Sci, vol.42, pp.669-680, 2017.

B. Felden, K. Hanawa, J. F. Atkins, H. Himeno, A. Muto et al., Presence and location of modified nucleotides in Escherichia coli tmRNA: Structural mimicry with tRNA acceptor branches, EMBO J, vol.17, pp.3188-3196, 1998.
URL : https://hal.archives-ouvertes.fr/inserm-00719626

W. E. Cohn, Pseudouridine, a carbon-carbon linked ribonucleoside in ribonucleic acids: Isolation, structure, and chemical characteristics, J. Biol. Chem, vol.235, pp.1488-1498, 1960.

S. Edelheit, S. Schwartz, M. R. Mumbach, O. Wurtzel, and R. Sorek, Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m 5 C within archaeal mRNAs, PLoS Genet, vol.9, 2013.

B. Wulff and K. Nishikura, Modulation of MicroRNA expression and function by ADARs, Current Topics in Microbiology and Immunology, pp.91-109, 2011.

D. Bar-yaacov, E. Mordret, R. Towers, T. Biniashvili, C. Soyris et al., RNA editing in bacteria recodes multiple proteins and regulates an evolutionarily conserved toxin-antitoxin system, Genome Res, vol.27, pp.1696-1703, 2017.

P. Ananth, G. Goldsmith, and N. Yathindra, An innate twist between Crick's wobble and Watson-Crick base pairs, RNA, vol.19, pp.1038-1053, 2013.

K. Nishikura, A-to-I editing of coding and non-coding RNAs by ADARs, Nat. Rev. Mol. Cell Biol, vol.17, pp.83-96, 2016.

W. Kong, H. Yang, L. He, J. Zhao, D. Coppola et al., MicroRNA-155 is regulated by the transforming growth factor ?/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA, Mol. Cell. Biol, vol.28, pp.6773-6784, 2008.

W. Yang, T. P. Chendrimada, Q. Wang, M. Higuchi, P. H. Seeburg et al., Modulation of microRNA processing and expression through RNA editing by ADAR deaminases, Nat. Struct. Mol. Biol, vol.13, pp.13-21, 2006.

Y. Kawahara, B. Zinshteyn, P. Sethupathy, H. Iizasa, A. G. Hatzigeorgiou et al., Redirection of silencing targets by adenosine-to-inosine editing of miRNAs, Science, vol.315, pp.1137-1140, 2007.

L. Li, Y. Song, X. Shi, J. Liu, S. Xiong et al., The landscape of miRNA editing in animals and its impact on miRNA biogenesis and targeting, Genome Res, vol.28, pp.132-143, 2018.

B. Goldstein, L. Agranat-tamir, D. Light, O. Ben-naim-zgayer, A. Fishman et al., A-to-I RNA editing promotes developmental stage-specific gene and lncRNA expression, Genome Res, vol.27, pp.462-470, 2017.

Y. Pinto, I. Buchumenski, E. Y. Levanon, and E. Eisenberg, Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets, Nucleic Acids Res, vol.46, pp.71-82, 2018.

L. Zhang, C. Yang, X. Varelas, and S. Monti, Altered RNA editing in 3 UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors, Sci. Rep, 2016.

A. Brümmer, Y. Yang, T. W. Chan, and X. Xiao, Structure-mediated modulation of mRNA abundance by A-to-I editing, Nat. Commun, vol.8, 1255.

R. Desrosiers, K. Friderici, and F. Rottman, Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells, Proc. Natl. Acad. Sci, vol.71, pp.3971-3975, 1974.

J. Roignant and M. Soller, m 6 A in mRNA. An ancient mechanism for fine-tuning gene expression, Trends Genet, vol.33, pp.380-390, 2017.

J. Huang and P. Yin, Structural insights into N 6 -methyladenosine (m 6 A) modification in the transcriptome, Genom. Proteom. Bioinform, vol.16, pp.85-98, 2018.

D. Dominissini, S. Moshitch-moshkovitz, S. Schwartz, M. Salmon-divon, L. Ungar et al., Topology of the human and mouse m 6 A RNA methylomes revealed by m 6 A-seq, Nature, vol.485, pp.201-206, 2012.

K. D. Meyer, Y. Saletore, P. Zumbo, O. Elemento, C. E. Mason et al., Comprehensive analysis of mRNA methylation reveals enrichment in 3 UTRs and near stop codons, Cell, vol.149, pp.1635-1646, 2012.

J. A. Bokar, M. E. Rath-shambaugh, R. Ludwiczak, P. Narayan, and F. Rottman, Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex, J. Biol. Chem, vol.269, pp.17697-17704, 1994.

R. R. Edupuganti, S. Geiger, R. G. Lindeboom, H. Shi, P. J. Hsu et al., N 6 -methyladenosine (m 6 A) recruits and repels proteins to regulate mRNA homeostasis, Nat. Struct. Mol. Biol, vol.24, pp.870-878, 2017.

H. Huang, H. Weng, W. Sun, X. Qin, H. Shi et al., Recognition of RNA N 6 -methyladenosine by IGF2BP proteins enhances mRNA stability and translation, Nat. Cell Biol, vol.20, pp.285-295, 2018.

G. Zheng, J. A. Dahl, Y. Niu, P. Fedorcsak, C. Huang et al., ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility, Mol. Cell, vol.49, pp.18-29, 2013.

G. Jia, Y. Fu, X. Zhao, Q. Dai, G. Zheng et al., N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO, Nat. Chem. Biol, vol.7, pp.885-887, 2011.

J. Wei, F. Liu, Z. Lu, Q. Fei, Y. Ai et al., Differential m 6 A, m 6 A m , and m 1 A demethylation mediated by FTO in the cell nucleus and cytoplasm, Mol. Cell, vol.71, pp.973-985, 2018.

C. R. Alarcón, H. Lee, H. Goodarzi, N. Halberg, and S. F. Tavazoie, N 6 -methyladenosine marks primary microRNAs for processing, Nature, vol.519, pp.482-485, 2015.

X. Wang, B. S. Zhao, I. A. Roundtree, Z. Lu, D. Han et al., N 6 -methyladenosine modulates messenger RNA translation efficiency, Cell, vol.161, pp.1388-1399, 2015.

X. Deng, K. Chen, G. Luo, X. Weng, Q. Ji et al., Widespread occurrence of N 6 -methyladenosine in bacterial mRNA, Nucleic Acids Res, vol.43, pp.6557-6567, 2015.

E. Sonnleitner and D. Haas, Small RNAs as regulators of primary and secondary metabolism in Pseudomonas species, Appl. Microbiol. Biotechnol, vol.91, pp.63-79, 2011.

H. C. O'farrell, J. N. Scarsdale, and J. P. Rife, Crystal structure of KsgA, a universally conserved rRNA adenine dimethyltransferase in Escherichia coli, J. Mol. Biol, vol.339, pp.337-353, 2004.

P. V. Sergiev, M. V. Serebryakova, A. A. Bogdanov, and O. A. Dontsova, The ybiN gene of Escherichia coli encodes adenine-N 6 methyltransferase specific for modification of A1618 of 23 S ribosomal RNA, a methylated residue located close to the ribosomal exit tunnel, J. Mol. Biol, vol.375, pp.291-300, 2008.

H. Chang, J. Lim, M. Ha, V. N. Kim, and . Tail-seq, Genome-wide determination of poly(A) tail length and 3 end modifications, Mol. Cell, vol.53, pp.1044-1052, 2014.

M. Lee, B. Kim, and V. N. Kim, Emerging roles of RNA modification: M 6 A and U-tail, Cell, vol.158, pp.980-987, 2014.

H. Cahová, M. Winz, K. Höfer, G. Nübel, and A. Jäschke, NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs, Nature, vol.519, pp.374-377, 2015.

Y. G. Chen, W. E. Kowtoniuk, I. Agarwal, Y. Shen, and D. R. Liu, LC/MS analysis of cellular RNA reveals NAD-linked RNA, Nat. Chem. Biol, vol.5, pp.879-881, 2009.

A. Jäschke, K. Höfer, G. Nübel, and J. Frindert, Cap-like structures in bacterial RNA and epitranscriptomic modification, Curr. Opin. Microbiol, vol.30, pp.44-49, 2016.

C. De-almeida, H. Scheer, H. Zuber, D. Gagliardi, and . Uridylation, A key posttranscriptional modification shaping the coding and noncoding transcriptome, Wiley interdisciplinary reviews. RNA, vol.9, 1440.
URL : https://hal.archives-ouvertes.fr/hal-01679700

M. R. Menezes, J. Balzeau, and J. P. Hagan, RNA uridylation in epitranscriptomics, gene regulation, and disease. Front, Mol. Biosci, vol.5, p.61, 2018.

L. Ji and X. Chen, Regulation of small RNA stability: Methylation and beyond, Cell Res, vol.22, pp.624-636, 2012.

I. Heo, M. Ha, J. Lim, M. Yoon, J. Park et al., Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs, Cell, vol.151, pp.521-532, 2012.

D. M. Burns, A. .;-d'ambrogio, S. Nottrott, and J. D. Richter, A) polymerases control miR-122 stability and p53 mRNA translation, Nature, vol.473, pp.105-108, 2011.

T. Katoh, Y. Sakaguchi, K. Miyauchi, T. Suzuki, S. Kashiwabara et al., Selective stabilization of mammalian microRNAs by 3 adenylation mediated by the cytoplasmic poly(A), p.2

, Genes Dev, vol.23, pp.433-438, 2009.

M. R. Jones, M. T. Blahna, E. Kozlowski, K. Y. Matsuura, J. D. Ferrari et al., Zcchc11 uridylates mature miRNAs to enhance neonatal IGF-1 expression, growth, and survival

C. Gutiérrez-vázquez, A. J. Enright, A. Rodríguez-galán, A. Pérez-garcía, P. Collier et al., Uridylation controls mature microRNA turnover during CD4 T-cell activation, RNA, vol.23, pp.882-891, 2017.

M. A. Newman, J. M. Thomson, and S. M. Hammond, Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing, RNA, vol.14, pp.1539-1549, 2008.

F. E. Loughlin, L. F. Gebert, H. Towbin, A. Brunschweiger, J. Hall et al., Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28, Nat. Struct. Mol. Biol, vol.19, pp.84-89, 2011.

J. P. Hagan, E. Piskounova, and R. I. Gregory, Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells, Nat. Struct. Mol. Biol, vol.16, pp.1021-1025, 2009.

H. Chang, R. Triboulet, J. E. Thornton, and R. I. Gregory, A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway, Nature, vol.497, pp.244-248, 2013.

N. Sarkar, Polyadenylation of mRNA in prokaryotes, Annu. Rev. Biochem, vol.66, pp.173-197, 1997.

F. Xu and S. N. Cohen, RNA degradation in Escherichia coli regulated by 3 adenylation and 5 phosphorylation, Nature, vol.374, pp.180-183, 1995.

D. Sinha, L. M. Matz, T. A. Cameron, and N. R. De-lay, Poly(A) polymerase is required for RyhB sRNA stability and function in Escherichia coli, RNA, vol.24, pp.1496-1511, 2018.

C. Y. Park, L. T. Jeker, K. Carver-moore, A. Oh, H. J. Liu et al., A resource for the conditional ablation of microRNAs in the mouse, Cell Rep, vol.1, pp.385-391, 2012.

E. Alvarez-saavedra and H. R. Horvitz, Many families of C. elegans microRNAs are not essential for development or viability, Curr. Biol, vol.20, pp.367-373, 2010.

E. A. Miska, E. Alvarez-saavedra, A. L. Abbott, N. C. Lau, A. B. Hellman et al., Most Caenorhabditis elegans microRNAs are individually not essential for development or viability, PLoS Genet, vol.3, pp.2395-2403, 2007.

M. Reichel, Y. Li, J. Li, and A. A. Millar, Inhibiting plant microRNA activity: Molecular SPONGEs, target MIMICs and STTMs all display variable efficacies against target microRNAs, Plant Biotechnol. J, vol.13, pp.915-926, 2015.

A. Kozomara, S. Griffiths-jones, and . Mirbase, Annotating high confidence microRNAs using deep sequencing data, Nucleic Acids Res, vol.42, 2014.

J. Li, Y. Liu, X. Xin, T. S. Kim, E. A. Cabeza et al., Evidence for positive selection on a number of microRNA regulatory interactions during recent human evolution, PLoS Genet, vol.8, 2012.

W. Sun, J. Li, S. Liu, J. Wu, H. Zhou et al., A resource for decoding the landscape of RNA modifications from high-throughput sequencing data, Nucleic Acids Res, vol.44, pp.259-265, 2016.

B. Kleaveland, C. Y. Shi, J. Stefano, and D. P. Bartel, A network of noncoding regulatory RNAs acts in the mammalian brain, Cell, vol.174, pp.350-362, 2018.

L. A. Yates, C. J. Norbury, and R. J. Gilbert, The long and short of microRNA, Cell, vol.153, pp.516-519, 2013.

D. Baek, J. Villén, C. Shin, F. D. Camargo, S. P. Gygi et al., The impact of microRNAs on protein output, Nature, vol.455, pp.64-71, 2008.

K. Höfer and A. Jäschke, Epitranscriptomics: RNA modifications in bacteria and archaea, Microbiol. Spectr, vol.6, 2018.

J. Bråte, R. S. Neumann, B. Fromm, A. A. Haraldsen, J. E. Tarver et al., Unicellular origin of the animal microRNA machinery, Curr. Biol, 2018.

S. Kang, J. Choi, Y. Lee, S. Hong, and H. Lee, Identification of microRNA-size, small RNAs in Escherichia coli, Curr. Microbiol, vol.67, pp.609-613, 2013.

B. Nejman-fale?czyk, S. Bloch, K. Licznerska, A. Dydecka, A. Felczykowska et al., A small, microRNA-size, ribonucleic acid regulating gene expression and development of Shiga toxin-converting bacteriophage ?24B