T. M. Geiman and K. D. Robertson, Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together?, J Cell Biochem, vol.87, pp.117-125, 2002.

B. Bonev and G. Cavalli, Organization and function of the 3D genome, Nat Rev Genet, vol.17, pp.661-678, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386805

A. J. Bannister and T. Kouzarides, Regulation of chromatin by histone modifications, Cell Res, vol.21, pp.381-395, 2011.

P. Tessarz and T. Kouzarides, Histone core modifications regulating nucleosome structure and dynamics, Nat Rev Mol Cell Bio, vol.15, pp.703-708, 2014.

A. Koch, S. C. Joosten, and Z. Feng, Analysis of DNA methylation in cancer: Location revisited, Nat Rev Clin Oncol, vol.15, pp.459-466, 2018.

F. Watt and P. L. Molloy, Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter, Gene Dev, vol.2, pp.1136-1143, 1988.

G. Csankovszki, A. Nagy, and R. Jaenisch, Synergism of Xist RNA, DNA methylation, and histone hypoacetylation in maintaining X chromosome inactivation, J Cell Biol, vol.153, pp.773-784, 2001.

E. Li, C. Beard, and R. Jaenisch, Role for DNA methylation in genomic imprinting, Nature, vol.366, pp.362-365, 1993.

M. Okano, D. W. Bell, and D. A. Haber, DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development, Cell, vol.99, pp.247-257, 1999.

H. Hashimoto, Y. Liu, and A. K. Upadhyay, Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation, Nucleic Acids Res, vol.40, pp.4841-4849, 2012.

C. S. Nabel, H. Jia, and Y. Ye, AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation, Nat Chem Biol, vol.8, pp.751-758, 2012.

M. Bochtler, A. Kolano, and G. L. Xu, DNA demethylation pathways: Additional players and regulators, Bioessays, vol.39, pp.1-13, 2017.

M. Tahiliani, K. P. Koh, and Y. Shen, Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1, Science, vol.324, pp.930-935, 2009.

E. Tamanaha, S. Guan, and K. Marks, Distributive processing by the iron(II)/?-ketoglutarate-dependent catalytic domains of the TET enzymes is consistent with epigenetic roles for oxidized 5-methylcytosine bases, J Am Chem Soc, vol.138, pp.9345-9348, 2016.

U. Müller, C. Bauer, and M. Siegl, TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation, Nucleic Acids Res, vol.42, pp.8592-8604, 2014.

A. R. Weber, C. Krawczyk, and A. B. Robertson, Biochemical reconstitution of TET1-TDG-BER-dependent active DNA demethylation reveals a highly coordinated mechanism, Nat Commun, vol.7, p.10806, 2016.

J. Wang, S. Hevi, and J. K. Kurash, The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation, Nat Genet, vol.41, pp.125-129, 2009.

A. Szwagierczak, S. Bultmann, and C. S. Schmidt, Sensitive enzymatic quantification of 5-hydroxymethylcytosine in genomic DNA, Nucleic Acids Res, vol.38, p.181, 2010.

C. G. Spruijt, F. Gnerlich, and A. H. Smits, Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives, Cell, vol.152, pp.1146-1159, 2013.

F. Matarese, S. Carrillode, and H. G. Stunnenberg, Hydroxymethylcytosine: A new kid on the epigenetic block, vol.7, p.562, 2011.

K. P. Koh, A. Yabuuchi, and S. Rao, Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells, Cell Stem Cell, vol.8, pp.200-213, 2011.

S. Ito, D. 'alessio, A. C. Taranova, and O. V. , Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification, Nature, vol.466, pp.1129-1133, 2010.

G. Caron, M. Hussein, and M. Kulis, Cell-cycle-dependent reconfiguration of the DNA methylome during terminal differentiation of human B cells into plasma cells, Cell Rep, vol.13, pp.1059-1071, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219671

Y. Costa, J. Ding, and T. W. Theunissen, NANOG-dependent function of TET1 and TET2 in establishment of pluripotency, Nature, vol.495, pp.370-374, 2013.

S. Kriaucionis and N. Heintz, The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain, Science, vol.324, pp.929-930, 2009.

S. G. Jin, X. Wu, and A. X. Li, Genomic mapping of 5-hydroxymethylcytosine in the human brain, Nucleic Acids Res, vol.39, pp.5015-5024, 2011.

C. E. Nestor, R. Ottaviano, and J. Reddington, Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes, Genome Res, vol.22, pp.467-477, 2012.

K. E. Szulwach, X. Li, and Y. Li, 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging, Nat Neurosci, vol.14, pp.1607-1616, 2011.

S. I. Sherwani and H. A. Khan, Role of 5-hydroxymethylcytosine in neurodegeneration, Gene, vol.570, pp.17-24, 2015.

J. Jeschke, E. Collignon, and F. Fuks, Portraits of TET-mediated DNA hydroxymethylation in cancer, Curr Opin Genet Dev, vol.36, pp.16-26, 2016.

M. C. Haffner, A. Chaux, and A. K. Meeker, Global 5-hydroxymethylcytosine content is significantly reduced in tissue stem/progenitor cell compartments and in human cancers, Oncotarget, vol.2, pp.627-637, 2011.

E. A. Mahé, T. Madigou, and A. A. Sé-randour, Cytosine modifications modulate the chromatin architecture of transcriptional enhancers, Genome Res, vol.27, pp.947-958, 2017.

X. Nan, H. H. Ng, and C. A. Johnson, Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex, Nature, vol.393, pp.386-389, 1998.

H. H. Ng and A. Bird, DNA methylation and chromatin modification, Curr Opin Genet Dev, vol.9, pp.158-163, 1999.

D. Schübeler, Function and information content of DNA methylation, Nature, vol.517, pp.321-326, 2015.

K. Williams, J. Christensen, and M. T. Pedersen, TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity, Nature, vol.473, pp.343-348, 2011.

A. A. Sé-randour, S. Avner, and F. Oger, Dynamic hydroxymethylation of deoxyribonucleic acid marks differentiation-associated enhancers, Nucleic Acids Res, vol.40, pp.8255-8265, 2012.

C. X. Song and C. He, Potential functional roles of DNA demethylation intermediates, Trends Biochem Sci, vol.38, pp.480-484, 2013.

H. Sepulveda, A. Villagra, and M. Montecino, Tet-mediated DNA demethylation is required for SWI/SNF-dependent chromatin remodeling and histone-modifying activities that trigger expression of the Sp7 osteoblast master gene during mesenchymal lineage commitment, Mol Cell Biol, vol.37, 2017.

O. Yildirim, R. Li, and J. H. Hung, Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells, Cell, vol.147, pp.1498-1510, 2011.

F. Neri, D. Incarnato, and A. Krepelova, Genome-wide analysis identifies a functional association of Tet1 and Polycomb repressive complex 2 in mouse embryonic stem cells, Genome Biol, vol.14, p.91, 2013.

R. Deplus, B. Delatte, and M. K. Schwinn, TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS, EMBO J, vol.32, pp.645-655, 2013.

L. Kong, L. Tan, and R. Lv, A primary role of TET proteins in establishment and maintenance of De Novo bivalency at CpG islands, Nucleic Acids Res, vol.44, pp.8682-8692, 2016.

A. Mendonca, E. H. Chang, and W. Liu, Hydroxymethylation of DNA influences nucleosomal conformation and stability in vitro, BBA-Gene Regul Mech, vol.1839, pp.1323-1329, 2014.

R. Deplus, B. Delatte, and M. K. Schwinn, TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS, EMBO J, vol.32, pp.645-655, 2013.

W. Guan, R. Guyot, and J. Samarut, Methylcytosine dioxygenase TET3 interacts with thyroid hormone nuclear receptors and stabilizes their association to chromatin, P Natl Acad Sci, vol.114, pp.8229-8234, 2017.

Y. W. Zhang, Z. Wang, and W. Xie, Acetylation enhances TET2 function in protecting against abnormal DNA methylation during oxidative stress, Mol Cell, vol.65, pp.323-335, 2017.

L. Cimmino, M. M. Dawlaty, and D. Ndiaye-lobry, TET1 is a tumor suppressor of hematopoietic malignancy, Nat Immunol, vol.16, pp.653-662, 2015.

J. An, E. Gonzá-lez-avalos, and A. Chawla, Acute loss of TET function results in aggressive myeloid cancer in mice, Nat Commun, vol.6, p.10071, 2015.

G. R. Kafer, X. Li, and T. Horii, 5-Hydroxymethylcytosine marks sites of DNA damage and promotes genome stability, Cell Rep, vol.14, pp.1283-1292, 2016.

E. Mahfoudhi, I. Talhaoui, and X. Cabagnols, TET2-mediated 5-hydroxymethylcytosine induces genetic instability and mutagenesis, DNA Rep, vol.43, pp.78-88, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01405648

D. Jiang, Y. Zhang, and R. P. Hart, Alteration in 5-hydroxymethylcytosine-mediated epigenetic regulation leads to Purkinje cell vulnerability in ATM deficiency, Brain, vol.138, pp.3520-3536, 2015.

D. Jiang, S. Wei, and F. Chen, TET3-mediated DNA oxidation promotes ATR-dependent DNA damage response, EMBO Rep, vol.18, pp.781-796, 2017.

A. N. Blackford, S. Jackson, A. Atm, and D. , the trinity at the heart of the DNA damage response, Mol Cell, vol.66, pp.801-817, 2017.

H. Sellou, T. Lebeaupin, and C. Chapuis, The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage, Mol Biol Cell, vol.27, pp.3791-3799, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01382426

R. Smith, H. Sellou, and C. Chapuis, CHD3 and CHD4 recruitment and chromatin remodeling activity at DNA breaks is promoted by early poly(ADP-ribose)-dependent chromatin relaxation, Nucleic Acids Res, vol.46, p.6087, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01808772

F. Ciccarone, E. Valentini, and M. Zampieri, 5mC-hydroxylase activity is influenced by the PARylation of TET1 enzyme, Oncotarget, vol.6, pp.24333-24347, 2015.

F. Ciccarone, E. Valentini, and M. G. Bacalini, Poly(ADP-ribosyl)ation is involved in the epigenetic control of TET1 gene transcription, Oncotarget, vol.5, pp.10356-10367, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01163733

D. M. Chou, B. Adamson, and N. E. Dephoure, A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage, P Natl Acad Sci, vol.107, pp.18475-18480, 2010.

M. S. Luijsterburg, C. Dinant, and H. Lans, Heterochromatin protein 1 is recruited to various types of DNA damage, J Cell Biol, vol.185, pp.577-586, 2009.

E. R. Abu-zhayia, S. W. Awwad, and B. Ben-oz, CDYL1 fosters double-strand break-induced transcription silencing and promotes homology-directed repair, J Mol Cell Biol, vol.1, p.1, 2017.

G. D'alessandro and F. Fagagna, Transcription and DNA damage: holding hands or crossing swords?, J Mol Biol, vol.429, pp.3215-3229, 2017.

J. Puc, A. K. Aggarwal, and M. G. Rosenfeld, Physiological functions of programmed DNA breaks in signal-induced transcription, Nat Rev Mol Cell Bio, vol.18, pp.471-476, 2017.

B. G. Ju, V. V. Lunyak, and V. Perissi, A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription, Science, vol.312, pp.1798-1802, 2006.

R. Madabhushi, F. Gao, and A. R. Pfenning, Activity-induced DNA breaks govern the expression of neuronal early-response genes, Cell, vol.161, pp.1592-1605, 2015.

B. Perillo, M. N. Ombra, and A. Bertoni, DNA oxidation as triggered by H3K9me2 demethylation drives estrogen-induced gene expression, Science, vol.319, pp.202-206, 2008.

J. Puc, P. Kozbial, and W. Li, Ligand-dependent enhancer activation regulated by topoisomerase-I activity, Cell, vol.160, pp.367-380, 2015.

L. Baranello, D. Wojtowicz, and K. Cui, RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription, Cell, vol.165, pp.357-371, 2016.

H. Bunch, B. P. Lawney, and Y. F. Lin, Transcriptional elongation requires DNA break-induced signalling, Nat Commun, vol.6, p.10191, 2015.

A. Marnef, S. Cohen, and G. Legube, Transcription-coupled DNA double-strand break repair: active genes need special care, J Mol Biol, vol.429, pp.1277-1288, 2017.

P. Huertas and A. Aguilera, Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination, Mol Cell, vol.12, pp.711-721, 2003.

J. Sollier, C. T. Stork, and M. L. Garcí-a-rubio, Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability, Mol Cell, vol.56, pp.777-785, 2014.

R. Mé-tivier, R. Gallais, and C. Tiffoche, Cyclical DNA methylation of a transcriptionally active promoter, Nature, vol.452, pp.45-50, 2008.

J. Li, X. Wu, and Y. Zhou, Decoding the dynamic DNA methylation and hydroxymethylation landscapes in endodermal lineage intermediates during pancreatic differentiation of hESC, Nucleic Acids Res, vol.46, pp.2883-2900, 2018.

Y. Zhang, D. Zhang, and Q. Li, Nucleation of DNA repair factors by FOXA1 links DNA demethylation to transcriptional pioneering, Nat Genet, vol.48, pp.1003-1013, 2016.

R. Boque-sastre, M. Soler, and C. Oliveira-mateos, Head-to-head antisense transcription and R-loop formation promotes transcriptional activation, P Natl Acad Sci, vol.112, pp.5785-5790, 2015.

, © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License