S. R. Eddy, Non-coding RNA genes and the modern RNA world, Nat. Rev. Genet, vol.2, pp.919-929, 2001.

T. R. Cech and J. A. Steitz, The noncoding RNA revolution-trashing old rules to forge new ones, Cell, vol.157, pp.77-94, 2014.

A. and V. , The evolution of our thinking about microRNAs, Nat. Med, vol.14, 1036.

D. P. Bartel, MicroRNAs: target recognition and regulatory functions, Cell, vol.136, pp.215-233, 2009.

V. N. Kim, J. Han, and M. C. Siomi, Biogenesis of small RNAs in animals, Nat. Rev. Mol. Cell Biol, vol.10, pp.126-139, 2009.

I. J. Macrae, E. Ma, M. Zhou, C. V. Robinson, and J. A. Doudna, In vitro reconstitution of the human RISC-loading complex, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.512-517, 2008.

M. V. Iorio and C. M. Croce, microRNA involvement in human cancer, Carcinogenesis, vol.33, pp.1126-1133, 2012.

Z. Li and T. M. Rana, Therapeutic targeting of microRNAs: current status and future challenges, Nat. Rev. Drug Discovery, vol.13, pp.622-638, 2014.

H. Ling, M. Fabbri, and G. A. Calin, MicroRNAs and other noncoding RNAs as targets for anticancer drug development, Nat. Rev. Drug Discovery, vol.12, pp.847-865, 2013.

K. D. Warner, C. E. Hajdin, and K. M. Weeks, Principles for targeting RNA with drug-like small molecules, Nat. Rev. Drug Discovery, vol.17, pp.547-558, 2018.

S. P. Velagapudi, B. R. Vummidi, and M. D. Disney, Small molecule chemical probes of microRNA function, Curr. Opin. Chem. Biol, vol.24, pp.97-103, 2015.

J. L. Childs-disney and M. D. Disney, Small Molecule Targeting of a MicroRNA Associated with Hepatocellular Carcinoma, ACS Chem. Biol, vol.11, pp.375-380, 2016.

M. G. Costales, C. L. Haga, S. P. Velagapudi, J. L. Childs-disney, D. G. Phinney et al., Small Molecule Inhibition of microRNA-210 Reprograms an Oncogenic Hypoxic Circuit, J. Am. Chem. Soc, vol.139, pp.3446-3455, 2017.

K. Gumireddy, D. D. Young, X. Xiong, J. B. Hogenesch, Q. Huang et al., Small-molecule inhibitors of microrna miR-21 function, Angew. Chem., Int. Ed, vol.47, pp.7482-7484, 2008.

C. L. Haga, S. P. Velagapudi, J. R. Strivelli, W. Y. Yang, M. D. Disney et al., Small Molecule Inhibition

, Biogenesis Disrupts Adaptive Responses to Hypoxia by Modulating ATM-mTOR Signaling, ACS Chem. Biol, vol.10, pp.2267-2276, 2015.

Z. Shi, J. Zhang, X. Qian, L. Han, K. Zhang et al., AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression, Cancer Res, vol.73, pp.5519-5531, 2013.

S. P. Velagapudi, S. M. Gallo, and M. D. Disney, Sequence-based design of bioactive small molecules that target precursor microRNAs, Nat. Chem. Biol, vol.10, pp.291-297, 2014.

D. D. Vo, C. Staedel, L. Zehnacker, R. Benhida, F. Darfeuille et al., Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules, ACS Chem. Biol, vol.9, pp.711-721, 2014.

D. D. Vo, T. P. Tran, C. Staedel, R. Benhida, F. Darfeuille et al., Oncogenic MicroRNAs Biogenesis as a Drug Target: Structure-Activity Relationship Studies on New Aminoglycoside Conjugates, vol.22, pp.5350-5362, 2016.

C. Staedel, T. P. Tran, J. Giraud, F. Darfeuille, A. Di-giorgio et al., Modulation of oncogenic miRNA biogenesis using functionalized polyamines, Sci. Rep, vol.8, 1667.
URL : https://hal.archives-ouvertes.fr/hal-01709540

S. P. Velagapudi, M. D. Cameron, C. L. Haga, L. H. Rosenberg, M. Lafitte et al., Design of a small molecule against an oncogenic noncoding RNA, Proc. Natl. Acad. Sci. U.S.A, vol.113, pp.5898-5903, 2016.

D. Giorgio, A. Tran, T. P. Duca, and M. , Small-molecule approaches toward the targeting of oncogenic miRNAs: roadmap for the discovery of RNA modulators, Future Med. Chem, vol.8, pp.803-816, 2016.

M. D. Disney, A. M. Winkelsas, S. P. Velagapudi, M. Southern, M. Fallahi et al., Inforna 2.0: A Platform for the Sequence-Based Design of Small Molecules Targeting Structured RNAs, ACS Chem. Biol, vol.11, pp.1720-1728, 2016.

P. C. Monroig, L. Chen, S. Zhang, and G. A. Calin, Small molecule compounds targeting miRNAs for cancer therapy, Adv. Drug Delivery Rev, vol.81, pp.104-116, 2015.

T. P. Tran, D. D. Vo, A. Di-giorgio, and M. Duca, Ribosometargeting antibiotics as inhibitors of oncogenic microRNAs biogenesis: Old scaffolds for new perspectives in RNA targeting, Bioorg. Med. Chem, vol.23, pp.5334-5344, 2015.

S. P. Velagapudi and M. D. Disney, Two-dimensional combinatorial screening enables the bottom-up design of a micro-RNA-10b inhibitor, Chem. Commun, vol.50, pp.3027-3029, 2014.

S. P. Velagapudi, S. J. Seedhouse, and M. D. Disney, Structureactivity relationships through sequencing (StARTS) defines optimal and suboptimal RNA motif targets for small molecules, Angew. Chem., Int. Ed, vol.49, pp.3816-3818, 2010.

P. M. Voorhoeve, C. Le-sage, M. Schrier, A. J. Gillis, H. Stoop et al., A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors, Cell, vol.124, pp.1169-1181, 2006.

K. H. Lee, Y. G. Goan, M. Hsiao, C. H. Lee, S. H. Jian et al., MicroRNA-373 (miR-373) posttranscriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer, Exp. Cell Res, vol.315, pp.2529-2538, 2009.

J. G. Delcros, S. Tomasi, S. Duhieu, M. Foucault, B. Martin et al., Effect of polyamine homologation on the transport and biological properties of heterocyclic amidines, J. Med. Chem, vol.49, pp.232-245, 2006.

A. M. Krichevsky and G. Gabriely, miR-21: a small multi-faceted RNA, J. Cell. Mol. Med, vol.13, pp.39-53, 2009.

Q. Wu, G. Luo, Z. Yang, F. Zhu, Y. An et al., Fan, D. miR-17-5p promotes proliferation by targeting SOCS6 in gastric cancer cells, FEBS Lett, vol.588, 2014.

S. Costinean, N. Zanesi, Y. Pekarsky, E. Tili, S. Volinia et al., Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice, Proc. Natl. Acad. Sci. U.S.A, vol.103, pp.7024-7029, 2006.

H. L. Lightfoot and J. Hall, Endogenous polyamine function-the RNA perspective, Nucleic Acids Res, vol.42, 2014.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner, R. K. Belew et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem, 2009.