;. Conner and . Stevens, More recent papers investigated classification approaches using a high number of features. Different numbers of cry classes were considered according to the clinical target: two classes (normal vs abnormal (Orozco-García and Reyes-García, 1990.

. Lederman, , 2008.

. Rosales-pérez, )), three classes (normal, hypo acoustic and asphyxia, 2004.

. Suaste-rivas, 2016) or hunger, pain and no-pain-no-hunger (Barajas-Montiel and Reyes-García, 2006)) and five classes (pain, asphyxia, hunger, deaf and normal, Random Forest (RF), 1996.

L. Chang, Spectrogram of cries were computed by Fast Fourier Transform (FFT) and used as input layer of a CNN. The method showed promising results with 78, Deep learning was also investigated to classify cries into three categories: hungry, pain and sleep, 2016.

. Pokorny, Other sound assessment Several recent audio processing methods have been proposed regarding non-cry signals and concerning either pre-linguistic vocalizations, 1986.

. Pokorny, Prelinguistic vocalizations have also been studied in 7-to 12-month-old infants having received the diagnosis of a neuro-developmental disorder (autism, Rett syndrome, fragile X syndrome) by Pokorny et al. They processed retrospective home video recordings provided by the family and made during family events, before the disorder was diagnosed, 30 infants ranging in age from 2 to 6 months, where significant differences were found in F0 and Mean Spectral Energy (MSE) with classical cries (fussy, hungry and pain) (Fuller and Horii, 1986.

A. F. Bos, A. Martijn, A. Okken, and H. F. Prechtl, Quality of general movements in preterm infants with transient periventricular echodensities, Acta Paediatrica, vol.87, issue.3, pp.328-335, 1998.

A. F. Bos, A. Martijn, R. M. Van-asperen, M. Hadders-algra, A. Okken et al., Qualitative assessment of general movements in high-risk preterm infants with chronic lung disease requiring dexamethasone therapy, The Journal of Pediatrics, vol.132, issue.2, pp.300-306, 1998.

J. Brieva and E. Moya-albor, Phase-based motion magnification video for monitoring of vital signals using the hermite transform, 13th International Conference on Medical Information Processing and Analysis, vol.10572, p.105720, 2017.

S. Cabon, F. Poree, A. Simon, M. Ugolin, O. Rosec et al., Motion estimation and characterization in premature newborns using long duration video recordings, IRBM, vol.38, issue.4, pp.207-213, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01535540

M. Caskey, B. Stephens, R. Tucker, and B. Vohr, Importance of parent talk on the development of preterm infant vocalizations, Pediatrics, p.2011, 2011.

L. Cattani, D. Alinovi, G. Ferrari, R. Raheli, E. Pavlidis et al., A wire-free, non-invasive, low-cost video processing-based approach to neonatal apnoea detection, BIOMS 2014-2014 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings, pp.67-73, 2014.

L. Cattani, D. Alinovi, G. Ferrari, R. Raheli, E. Pavlidis et al., Monitoring infants by automatic video processing: A unified approach to motion analysis, Computers in Biology and Medicine, vol.80, pp.158-165, 2017.

C. Chang and J. Li, Application of deep learning for recognizing infant cries, 2016 IEEE International Conference on, pp.1-2, 2016.

K. Christensson, T. Cabrera, E. Christensson, K. Uvnas-moberg, and J. Winberg, Separation distress call in the human neonate in the absence of maternal body contact, Acta Paediatrica, vol.84, issue.5, pp.468-473, 1995.

K. D. Craig, M. F. Whitfield, R. V. Grunau, J. Linton, and H. D. Hadjistavropoulos, Pain in the preterm neonate: Behavioural and physiological indices, vol.52, pp.287-299, 1993.

K. Cuppens, L. Lagae, B. Ceulemans, S. Van-huffel, and B. Vanrumste, Automatic video detection of body movement during sleep based on optical flow in pediatric patients with epilepsy, Medical & Biological Engineering & Computing, vol.48, issue.9, pp.923-954, 2010.

K. Cuppens, L. Lagae, and B. Vanrumste, Towards automatic detection of movement during sleep in pediatric patients with epilepsy by means of video recordings and the optical flow algorithm, IFMBE Proceedings, vol.22, pp.784-789, 2009.

M. A. Díaz, C. A. García, L. C. Robles, J. E. Altamirano, and A. V. Mendoza, Automatic infant cry analysis for the identification of qualitative features to help opportune diagnosis, Biomedical Signal Processing and Control, vol.7, issue.1, pp.43-49, 2012.

D. P. Dogra, A. K. Majumdar, S. Sural, J. Mukherjee, S. Mukherjee et al., Toward automating hammersmith pulled-to-sit examination of infants using feature point based video object tracking, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.20, pp.38-47, 2012.

G. P. Donzelli, G. Rapisardi, M. Moroni, S. Zani, B. Tomasini et al., Computerized cry analysis in infants affected by severe protein energy malnutrition, Acta Paediatrica, vol.83, issue.2, pp.204-215, 1994.

Y. S. Dossso, A. Bekele, S. Nizami, C. Aubertin, K. Greenwood et al., Segmentation of patient images in the neonatal intensive care unit, IEEE Life Sciences Conference (LSC), pp.45-48, 2018.

D. Emmanouilidou, E. D. Mccollum, D. E. Park, and M. Elhilali, Computerized lung sound screening for pediatric auscultation in noisy field environments, IEEE Transactions on Biomedical Engineering, vol.65, issue.7, pp.1564-1574, 2017.

F. Eyben, F. Weninger, F. Gross, and B. Schuller, Recent developments in openSMILE, the munich open-source multimedia feature extractor, Proceedings of the 21st ACM International Conference on Multimedia, MM '13, pp.835-838, 2013.

C. Fang, H. Hsieh, C. , and S. , A vision-based infant respiratory frequency detection system, Digital Image Computing: Techniques and Applications (DICTA), 2015 International Conference on, pp.1-8, 2015.

D. Ferretti, M. Severini, E. Principi, A. Cenci, and S. Squartini, Infant cry detection in adverse acoustic environments by using deep neural networks, 2018.

, European Signal Processing Conference, EUSIPCO 2018. European Signal Processing Conference

B. F. Fuller, Acoustic discrimination of three types of infant cries, Nursing Research, vol.40, issue.3, pp.156-160, 1991.

B. F. Fuller and D. A. Conner, The effect of pain on infant behaviors, Clinical Nursing Research, vol.4, issue.3, pp.253-273, 1995.

B. F. Fuller and Y. Horii, Differences in fundamental frequency, jitter, and shimmer among four types of infant vocalizations, Journal of Communication Disorders, vol.19, issue.6, pp.441-447, 1986.

B. F. Fuller and Y. Horii, Spectral energy distribution in four types of infant vocalizations, Journal of Communication Disorders, vol.21, issue.3, pp.251-61, 1988.

P. W. Fuller, W. H. Wenner, and S. Blackburn, Comparison between time-lapse video recordings of behavior and polygraphic state determinations in premature infants, Psychophysiology, vol.15, issue.6, pp.594-602, 1978.

O. F. Galaviz and C. A. García, Infant cry classification to identify hypo acoustics and asphyxia comparing an evolutionary-neural system with a neural network system, Mexican International Conference on Artificial Intelligence, pp.949-958, 2005.

A. M. Goberman and M. P. Robb, Acoustic examination of preterm and full-term infant cries: The long-time average spectrum, Journal of Speech, Language, and Hearing Research, vol.42, issue.4, pp.850-61, 1999.

L. J. Goldman, Nasal airflow and thoracoabdominal motion in children using infrared thermographic video processing, Pediatric Pulmonology, vol.47, issue.5, pp.476-486, 2012.

H. L. Golub and M. J. Corwin, Infant cry: A clue to diagnosis, Pediatrics, vol.69, issue.2, pp.197-201, 1982.

S. Gomez, M. O'sullivan, E. Popovici, S. Mathieson, G. Boylan et al., On sound-based interpretation of neonatal eeg, 2018.

J. A. Green, L. E. Jones, and G. E. Gustafson, Perception of cries by parents and nonparents: Relation to cry acoustics, Developmental Psychology, vol.23, issue.3, p.370, 1987.

M. Grigg-damberger, D. Gozal, C. L. Marcus, S. F. Quan, C. L. Rosen et al., The visual scoring of sleep and arousal in infants and children, Journal of Clinical Sleep Medicine, vol.3, issue.2, pp.201-241, 2007.

R. V. Grunau and K. D. Craig, Pain expression in neonates: Facial action and cry, Pain, vol.28, issue.3, pp.395-410, 1987.

R. V. Grunau, C. C. Johnston, C. , and K. D. , Neonatal facial and cry responses to invasive and non-invasive procedures, Pain, vol.42, issue.3, pp.295-305, 1990.

A. Guzzetta, E. Mercuri, G. Rapisardi, F. Ferrari, M. F. Roversi et al., General movements detect early signs of hemiplegia in term infants with neonatal cerebral infarction, Neuropediatrics, vol.34, issue.2, pp.61-67, 2003.

M. Hariharan, S. Yaacob, A. , and S. A. , Pathological infant cry analysis using wavelet packet transform and probabilistic neural network, Expert Systems with Applications, vol.38, issue.12, pp.15377-15382, 2011.

L. Hazelhoff, J. Han, and S. Bambang-oetomo, Behavioral state detection of newborns based on facial expression analysis, International Conference on Advanced Concepts for Intelligent Vision Systems, pp.698-709, 2009.

K. Heimann, K. Jergus, A. K. Abbas, N. Heussen, S. Leonhardt et al., Infrared thermography for detailed registration of thermoregulation in premature infants, Journal of Perinatal Medicine, vol.41, issue.5, pp.613-620, 2013.

J. Hirschberg, Acoustic analysis of pathological cries, stridors and coughing sounds in infancy, International Journal of Pediatric Otorhinolaryngology, vol.2, issue.4, pp.287-300, 1980.

B. K. Horn and B. G. Schunck, Determining optical flow, Artificial Intelligence, vol.17, issue.1-3, pp.185-203, 1981.

J. Huvanandana, C. Thamrin, M. Tracy, M. Hinder, C. Nguyen et al., Advanced analyses of physiological signals in the neonatal intensive care unit, Physiological Measurement, vol.38, issue.10, p.253, 2017.

C. C. Johnston, B. Stevens, K. D. Craig, and R. V. Grunau, Developmental changes in pain expression in premature, full-term, two-and four-month-old infants, Pain, vol.52, issue.2, pp.201-208, 1993.

Y. Kaneshi, H. Ohta, K. Morioka, I. Hayasaka, Y. Uzuki et al., Influence of light exposure at nighttime on sleep development and body growth of preterm infants, Scientific Reports, vol.6, p.21680, 2016.

N. B. Karayiannis, A. Sami, J. Frost, M. S. Wise, and E. M. Mizrahi, Quantifying motion in video recordings of neonatal seizures by feature trackers based on predictive block matching, In Engineering in Medicine and Biology Society, 2004.

, Annual International Conference of the IEEE, vol.1, pp.1447-1450

N. B. Karayiannis, A. Sami, J. D. Frost, M. S. Wise, and E. M. Mizrahi, Automated extraction of temporal motor activity signals from video recordings of neonatal seizures based on adaptive block matching, IEEE Transactions on Biomedical Engineering, vol.52, pp.676-686, 2005.

N. B. Karayiannis, S. Srinivasan, R. Bhattacharya, M. S. Wise, J. D. Frost et al., Extraction of motion strength and motor activity signals from video recordings of neonatal seizures, IEEE Transactions on Medical Imaging, vol.20, issue.9, pp.965-80, 2001.

N. B. Karayiannis and G. Tao, An improved procedure for the extraction of temporal motion strength signals from video recordings of neonatal seizures, Image and Vision Computing, vol.24, issue.1, pp.27-40, 2006.

N. B. Karayiannis, G. Tao, J. D. Frost, J. Wise, M. S. Hrachovy et al., Automated detection of videotaped neonatal seizures based on motion segmentation methods, Clinical Neurophysiology, vol.117, issue.7, pp.1585-94, 2006.

N. B. Karayiannis, G. Tao, Y. Xiong, A. Sami, B. Varughese et al., Computerized motion analysis of videotaped neonatal seizures of epileptic origin, Epilepsia, vol.46, issue.6, pp.901-918, 2005.

N. B. Karayiannis, B. Varughese, G. Tao, J. D. Frost, J. Wise et al., Quantifying motion in video recordings of neonatal seizures by regularized optical flow methods, IEEE Transactions on Image Processing, vol.14, issue.7, pp.890-903, 2005.

N. B. Karayiannis, Y. Xiong, J. D. Frost, J. Wise, M. S. Mizrahi et al., Quantifying motion in video recordings of neonatal seizures by robust motion trackers based on block motion models, IEEE Transactions on Biomedical Engineering, vol.52, issue.6, pp.1065-77, 2005.

N. Koolen, O. Decroupet, A. Dereymaeker, K. Jansen, J. Vervisch et al., Automated respiration detection from neonatal video data, Proceedings of the 4th International Conference on Pattern Recognition Applications and Methods, pp.164-169, 2015.

L. L. Lagasse, A. R. Neal, and B. M. Lester, Assessment of infant cry: Acoustic cry analysis and parental perception, Mental Retardation and Developmental Disabilities Research Reviews, vol.11, issue.1, pp.83-93, 2005.

Y. Lavner, R. Cohen, D. Ruinskiy, and H. Ijzerman, Baby cry detection in domestic environment using deep learning, 2016 ICSEE International Conference on the Science of Electrical Engineering, pp.1-5, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02023191

D. Lederman, E. Zmora, S. Hauschildt, A. Stellzig-eisenhauer, W. et al., Classification of cries of infants with cleft-palate using parallel hidden markov models, Medical & Biological Engineering & Computing, vol.46, issue.10, pp.965-975, 2008.

A. Lee, T. Kawahara, and K. Shikano, Julius-an open source real-time large vocabulary recognition engine, Proc. European Conference on Speech Communication and Technology (EUROSPEECH), pp.1691-1694, 2001.

B. M. Lester, Spectrum analysis of the cry sounds of well-nourished and malnourished infants, Child Development, pp.237-241, 1976.

B. M. Lester and M. Dreher, Effects of marijuana use during pregnancy on newborn cry, Child Development, pp.765-771, 1989.

X. Long, E. Van-der-sanden, Y. Prevoo, L. Ten-hoor, S. Den-boer et al., An efficient heuristic method for infant in/out of bed detection using video-derived motion estimates, Biomedical Physics & Engineering Express, vol.4, issue.3, p.35035, 2018.

C. Manfredi, A. Bandini, D. Melino, R. Viellevoye, M. Kalenga et al., Automated detection and classification of basic shapes of newborn cry melody, Biomedical Signal Processing and Control, vol.45, pp.174-181, 2018.

C. Manfredi, L. Bocchi, S. Orlandi, L. Spaccaterra, and G. P. Donzelli, Highresolution cry analysis in preterm newborn infants, Medical Engineering & Physics, vol.31, issue.5, pp.528-560, 2009.

J. Markel, The SIFT algorithm for fundamental frequency estimation, IEEE Transactions on Audio and Electroacoustics, vol.20, issue.5, pp.367-377, 1972.

P. B. Marschik, F. B. Pokorny, R. Peharz, D. Zhang, J. O'muircheartaigh et al., A novel way to measure and predict development: A heuristic approach to facilitate the early detection of neurodevelopmental disorders, Current Neurology and Neuroscience Reports, vol.17, issue.43, pp.1-15, 2017.

L. Mazzone, D. Mugno, M. , and D. , The general movements in children with down syndrome, Early Human Development, vol.79, issue.2, pp.119-149, 2004.

K. Michelsson, A. Järvenpää, R. , and A. , Sound spectrographic analysis of pain cry in preterm infants, Early Human Development, vol.8, issue.2, pp.141-149, 1983.

K. Michelsson and O. Michelsson, Phonation in the newborn, infant cry, International Journal of Pediatric Otorhinolaryngology, vol.49, issue.1, pp.297-301, 1999.

E. M. Mizrahi and P. Kellaway, Characterization and classification of neonatal seizures, Neurology, vol.37, issue.12, pp.1837-1881, 1987.

A. Morielli, S. Ladan, F. M. Ducharme, and R. T. Brouillette, Can sleep and wakefulness be distinguished in children by cardiorespiratory and videotape recordings?, Chest, vol.109, issue.3, pp.680-687, 1996.

G. Naithani, J. Kivinummi, T. Virtanen, O. Tammela, M. J. Peltola et al., Automatic segmentation of infant cry signals using hidden Markov models, EURASIP Journal on Audio, Speech, and Music Processing, vol.2018, issue.1, pp.1-14, 2018.

G. M. Ntonfo, G. Ferrari, R. Raheli, and F. Pisani, Low-complexity image processing for real-time detection of neonatal clonic seizures, IEEE Transactions on Information Technology in Biomedicine, vol.16, issue.3, pp.375-382, 2012.

M. D. Olsen, A. Herskind, J. B. Nielsen, and R. R. Paulsen, Model-based motion tracking of infants, European Conference on Computer Vision, pp.673-685, 2014.

S. Orlandi, A. Bandini, F. Fiaschi, and C. Manfredi, Testing software tools for newborn cry analysis using synthetic signals, Biomedical Signal Processing and Control, vol.37, pp.16-22, 2017.

S. Orlandi, L. Bocchi, G. Donzelli, and C. Manfredi, Central blood oxygen saturation vs crying in preterm newborns, Biomedical Signal Processing and Control, vol.7, issue.1, pp.88-92, 2012.

S. Orlandi, P. H. Dejonckere, J. Schoentgen, J. Lebacq, N. Rruqja et al., Effective pre-processing of long term noisy audio recordings: An aid to clinical monitoring, Biomedical Signal Processing and Control, vol.8, issue.6, pp.799-810, 2013.

S. Orlandi, C. A. Garcia, A. Bandini, G. Donzelli, and C. Manfredi, Application of pattern recognition techniques to the classification of full-term and preterm infant cry, Journal of Voice, vol.30, issue.6, pp.656-663, 2016.

S. Orlandi, A. Guzzetta, A. Bandini, V. Belmonti, S. D. Barbagallo et al., AVIM-A contactless system for infant data acquisition and analysis: Software architecture and first results, Biomedical Signal Processing and Control, vol.20, pp.85-99, 2015.

S. Orlandi, C. Manfredi, L. Bocchi, and M. Scattoni, Automatic newborn cry analysis: A non-invasive tool to help autism early diagnosis, 2012 Annual International Conference of the IEEE, pp.2953-2956, 2012.

J. Orozco-garcía and C. A. Reyes-garcía, A study on the recognition of patterns of infant cry for the identification of deafness in just born babies with neural networks, In Iberoamerican Congress on Pattern Recognition, pp.342-349, 2003.

S. D. Ortiz, D. I. Beceiro, and T. Ekkel, A radial basis function network oriented for infant cry classification, Iberoamerican Congress on Pattern Recognition, pp.374-380, 2004.

N. Otsu, A threshold selection method from gray-level histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.1, pp.62-66, 1979.

Y. Pamula, A. Campbell, S. Coussens, M. Davey, M. Griffiths et al., ASTA/ASA addendum to the AASM guidelines for the recording and scoring of paediatric sleep, In Journal of Sleep Research, vol.20, pp.4-4, 2011.

S. Pearce and B. Taylor, Energy distribution in the spectrograms of the cries of normal and birth asphyxiated infants, Physiological Measurement, vol.14, pp.263-68, 1993.

S. Pearce and B. Taylor, Time-frequency analysis of infant cry: Measures that identify individuals, Physiological Measurement, vol.14, pp.253-62, 1993.

M. Pediaditis, M. Tsiknakis, and N. Leitgeb, Vision-based motion detection, analysis and recognition of epileptic seizures-a systematic review, Computer Methods and Programs in Biomedicine, vol.108, issue.3, pp.1133-1181, 2012.

F. B. Pokorny, K. D. Bartl-pokorny, C. Einspieler, D. Zhang, R. Vollmann et al., Typical vs. atypical: Combining auditory Gestalt perception and acoustic analysis of early vocalisations in Rett syndrome, vol.82, pp.109-119, 2018.

F. B. Pokorny, R. Peharz, W. Roth, M. Zöhrer, F. Pernkopf et al., Manual versus automated: The challenging routine of infant vocalisation segmentation in home videos to study neuro (mal) development, pp.2997-3001, 2016.

R. Poppe, Vision-based human motion analysis: An overview, Computer Vision and Image Understanding, vol.108, pp.4-18, 2007.

F. Porée, A. Simon, S. Cabon, A. Corolleur, N. Nardi et al., Traitement de vidéos de polysomnographie pour l'estimation de l'état des yeux chez le nouveau-né prématuré, XXVe Colloque GRETSI, pp.1-4, 2015.

H. F. Prechtl, Qualitative changes of spontaneous movements in fetus and preterm infant are a marker of neurological dysfunction, Early Human Development, vol.23, issue.3, pp.151-159, 1990.

H. F. Prechtl, C. Einspieler, G. Cioni, A. F. Bos, F. Ferrari et al., An early marker for neurological deficits after perinatal brain lesions, Lancet, vol.349, issue.9062, pp.1361-1364, 1997.

G. Raboshchuk, C. Nadeu, P. Jan?ovi?, A. P. Lilja, M. Köküer et al., A knowledge-based approach to automatic detection of equipment alarm sounds in a neonatal intensive care unit environment, IEEE journal of Translational Engineering in Health and Medicine, vol.6, pp.1-10, 2018.

G. Raboshchuk, C. Nadeu, S. V. Pinto, O. R. Fornells, B. M. Mahamud et al., Pre-processing techniques for improved detection of vocalization sounds in a neonatal intensive care unit, Biomedical Signal Processing and Control, vol.39, pp.390-395, 2018.

H. Rahmati, O. M. Aamo, Ø. Stavdahl, R. Dragon, A. et al., Video-based early cerebral palsy prediction using motion segmentation, 36th Annual International Conference of the IEEE, pp.3779-3783, 2014.

H. Rahmati, R. Dragon, O. M. Aamo, L. Adde, Ø. Stavdahl et al., Weakly supervised motion segmentation with particle matching, Computer Vision and Image Understanding, vol.140, pp.30-42, 2015.

A. Rechtschaffen and A. Kales, A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects, 1968.

B. Reggiannini, S. J. Sheinkopf, H. F. Silverman, X. Li, and B. M. Lester, A flexible analysis tool for the quantitative acoustic assessment of infant cry, Journal of Speech, Language, and Hearing Research, vol.56, issue.5, pp.1416-1428, 2013.

O. F. Reyes-galaviz, E. A. Tirado, R. , and C. A. , Classification of infant crying to identify pathologies in recently born babies with anfis, International Conference on Computers for Handicapped Persons, pp.408-415, 2004.

O. F. Reyes-galaviz, A. Verduzco, E. Arch-tirado, R. , and C. A. , Analysis of an infant cry recognizer for the early identification of pathologies, Nonlinear Speech Modeling and Applications, pp.404-409, 2005.

A. Rosales-pérez, C. A. Reyes-garcía, J. A. Gonzalez, O. F. Reyes-galaviz, H. J. Escalante et al., Classifying infant cry patterns by the genetic selection of a fuzzy model, Biomedical Signal Processing and Control, vol.17, pp.38-46, 2015.

P. Runefors, E. Arnbjörnsson, G. Elander, M. , and K. , Newborn infants' cry after heel-prick: Analysis with sound spectrogram, Acta Paediatrica, vol.89, issue.1, pp.68-72, 2000.

A. Sami, N. B. Karayiannis, J. D. Frost, M. S. Wise, and E. M. Mizrahi, Automated tracking of multiple body parts in video recordings of neonatal seizures, Building, pp.312-315, 2004.

R. Schönweiler, S. Kaese, S. Möller, A. Rinscheid, and M. Ptok, Neuronal networks and self-organizing maps: New computer techniques in the acoustic evaluation of the infant cry, International Journal of Pediatric Otorhinolaryngology, vol.38, issue.1, pp.1-11, 1996.

S. J. Sheinkopf, J. M. Iverson, M. L. Rinaldi, and B. M. Lester, Atypical cry acoustics in 6-month-old infants at risk for autism spectrum disorder, Autism Research, vol.5, issue.5, pp.331-339, 2012.

A. Shimizu, A. Ishii, and S. Okada, Monitoring preterm infants' body movement to improve developmental care for their health, Consumer Electronics (GCCE), 2017 IEEE 6th Global Conference on, pp.1-5, 2017.

Y. Shinya, M. Kawai, F. Niwa, and M. Myowa-yamakoshi, Preterm birth is associated with an increased fundamental frequency of spontaneous crying in human infants at term-equivalent age, Biology Letters, issue.8, p.10, 2014.

A. Sikdar, S. K. Behera, D. P. Dogra, and H. Bhaskar, Contactless visionbased pulse rate detection of infants under neurological examinations, p.37, 2015.

, Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.650-653

Y. Sivan, A. Kornecki, and T. Schonfeld, Screening obstructive sleep apnoea syndrome by home videotape recording in children, European Respiratory Journal, vol.9, issue.10, pp.2127-2158, 1996.

K. So, P. Buckley, T. M. Adamson, and R. S. Horne, Actigraphy correctly predicts sleep behavior in infants who are younger than six months, when compared with polysomnography, Pediatric Research, vol.58, pp.761-765, 2005.

A. J. Spittle, N. C. Brown, L. W. Doyle, R. N. Boyd, R. W. Hunt et al., Quality of general movements is related to white matter pathology in very preterm infants, Pediatrics, vol.121, issue.5, pp.1184-1193, 2008.

A. Stahl, C. Schellewald, O. Stavdahl, O. M. Aamo, L. Adde et al., An optical flow-based method to predict infantile cerebral palsy, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.20, issue.4, pp.605-619, 2012.

B. J. Stevens, C. C. Johnston, and L. Horton, Factors that influence the behavioral pain responses of premature infants, Pain, vol.59, issue.1, pp.101-110, 1994.

I. Suaste-rivas, O. F. Reyes-galaviz, A. Diaz-mendez, R. , and C. A. , A fuzzy relational neural network for pattern classification, Iberoamerican Congress on Pattern Recognition, pp.358-365, 2004.

D. Sun, S. Roth, and M. J. Black, A quantitative analysis of current practices in optical flow estimation and the principles behind them, International Journal of Computer Vision, vol.106, issue.2, pp.115-137, 2014.

M. Sung, T. M. Adamson, and R. S. Horne, Validation of actigraphy for determining sleep and wake in preterm infants, Acta Paediatrica, vol.98, pp.52-57, 2009.

J. L. Tenold, D. H. Crowell, R. H. Jones, T. H. Daniel, D. F. Mcpherson et al., Cepstral and stationarity analyses of full-term and premature infants' cries, The Journal of the Acoustical Society of America, vol.56, issue.3, pp.975-80, 1974.

B. T. Thach, Maturation of cough and other reflexes that protect the fetal and neonatal airway, Pulmonary Pharmacology & Therapeutics, vol.20, issue.4, pp.365-370, 2007.

B. R. Tharp, Neonatal seizures and syndromes, Epilepsia, vol.43, pp.2-10, 2002.

C. Thodén, A. Järvenpää, M. , and K. , Sound spectrographic cry analysis of pain cry in prematures, Infant Crying, pp.105-117, 1985.

R. Torres, D. Battaglino, and L. Lepauloux, Baby cry sound detection: A comparison of hand crafted features and deep learning approach, International Conference on Engineering Applications of Neural Networks, pp.168-179, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01588679

M. Van-gastel, B. Balmaekers, S. B. Oetomo, and W. Verkruysse, Near-continuous non-contact cardiac pulse monitoring in a neonatal intensive care unit in near darkness, Optical Diagnostics and Sensing XVIII: Toward Point-of-Care Diagnostics, vol.1050114, pp.1-9, 2018.

G. Várallyay, Future prospects of the application of the infant cry in the medicine, Periodica Polytechnica Electrical Engineering, vol.50, issue.1-2, pp.47-62, 2006.

G. Várallyay, The melody of crying, International Journal of Pediatric Otorhinolaryngology, vol.71, issue.11, pp.1699-1708, 2007.

G. Várallyay, Z. Benyó, A. Illényi, Z. Farkas, and L. Kovács, Acoustic analysis of the infant cry: Classical and new methods, IEMBS'04. 26th Annual International Conference of the IEEE, vol.1, pp.313-316, 2004.

A. Verduzco-mendoza, E. Arch-tirado, C. A. Reyes-garcía, J. Leybon-ibarra, and J. Liconabonilla, Spectrographic cry analysis in newborns with profound hearing loss and perinatal high-risk newborns, Cirugia y Cirujanos, vol.80, issue.1, pp.3-10, 2012.

M. Villarroel, A. Guazzi, J. Jorge, S. Davis, P. Watkinson et al., Continuous non-contact vital sign monitoring in neonatal intensive care unit, Healthcare Technology Letters, vol.1, issue.3, pp.87-91, 2014.

N. Wahid, P. Saad, and M. Hariharan, Automatic infant cry pattern classification for a multiclass problem, Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol.8, issue.9, pp.45-52, 2016.

O. Wasz-höckert, K. Michelsson, L. , and J. , Twenty-five years of Scandinavian cry research, Infant Crying, pp.83-104, 1985.

K. Wermke and W. Mende, Musical elements in human infants' cries: In the beginning is the melody, Musicae Scientiae, vol.13, pp.151-175, 2009.

K. Wermke, W. Mende, C. Manfredi, and P. Bruscaglioni, Developmental aspects of infant's cry melody and formants, Medical Engineering & Physics, vol.24, issue.7-8, pp.501-515, 2002.

S. Yamamoto, Y. Yoshitomi, M. Tabuse, K. Kushida, A. et al., Recognition of a baby's emotional cry towards robotics baby caregiver, International Journal of Advanced Robotic Systems, vol.10, issue.2, p.86, 2013.

N. Zaker, M. H. Mahoor, W. I. Mattson, D. S. Messinger, and J. F. Cohn, A comparison of alternative classifiers for detecting occurrence and intensity in spontaneous facial expression of infants with their mothers, 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, p.12, 2013.

N. Zaker, M. H. Mahoor, D. S. Messinger, and J. F. Cohn, Jointly detecting infants' multiple facial action units expressed during spontaneous face-to-face communication, IEEE International Conference on Image Processing (ICIP), vol.80208, pp.1357-1360, 2014.

G. Zamzami, G. Ruiz, D. Goldgof, R. Kasturi, Y. Sun et al., Pain assessment in infants: Towards spotting pain expression based on infants' facial strain, 11th IEEE International Conference and Workshops on, vol.5, pp.1-5, 2015.

P. S. Zeskind, Adult responses to cries of low and high risk infants, Infant Behavior and Development, vol.3, pp.167-177, 1980.

P. S. Zeskind and B. M. Lester, Acoustic features and auditory perceptions of the cries of newborns with prenatal and perinatal complications, Child Development, pp.580-589, 1978.

P. S. Zeskind and T. R. Marshall, The relation between variations in pitch and maternal perceptions of infant crying, Child Development, pp.193-196, 1988.

P. S. Zeskind, S. Parker-price, and R. G. Barr, Rhythmic organization of the sound of infant crying, Developmental Psychobiology: The Journal of the International Society for Developmental Psychobiology, vol.26, issue.6, pp.321-333, 1993.