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Abstract

Background: Traditional surveillance systems produce estimates of influenza-like illness (ILI) incidence rates, but with 1- to
3-week delay. Accurate real-time monitoring systems for influenza outbreaks could be useful for making public health decisions.
Several studies have investigated the possibility of using internet users’ activity data and different statistical models to predict
influenza epidemics in near real time. However, very few studies have investigated hospital big data.
Objective: Here, we compared internet and electronic health records (EHRs) data and different statistical models to identify
the best approach (data type and statistical model) for ILI estimates in real time.
Methods: We used Google data for internet data and the clinical data warehouse eHOP, which included all EHRs from Rennes
University Hospital (France), for hospital data. We compared 3 statistical models—random forest, elastic net, and support vector
machine (SVM).
Results: For national ILI incidence rate, the best correlation was 0.98 and the mean squared error (MSE) was 866 obtained with
hospital data and the SVM model. For the Brittany region, the best correlation was 0.923 and MSE was 2364 obtained with
hospital data and the SVM model.
Conclusions: We found that EHR data together with historical epidemiological information (French Sentinelles network) allowed
for accurately predicting ILI incidence rates for the entire France as well as for the Brittany region and outperformed the internet
data whatever was the statistical model used. Moreover, the performance of the two statistical models, elastic net and SVM, was
comparable.

(JMIR Public Health Surveill 2018;4(4):e11361)   doi:10.2196/11361
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Introduction

Background
Influenza is a major public health problem. Outbreaks cause up
to 5 million severe cases and 500,000 deaths per year worldwide
[1-5]. During influenza peaks, large increase in visits to general
practitioners and emergency departments causes health care
system disruption.

To reduce its impact and help organize adapted sanitary
responses, it is necessary to monitor influenza-like illness (ILI;
any acute respiratory infection with fever ≥ 38°C, cough, and
onset within the last 10 days) activity. Some countries rely on
clinical surveillance schemes based on reports by sentinel
physicians [6], where volunteer outpatient health care providers
report all ILI cases seen during consultation each week. In
France, ILI incidence rate is then computed at the national or
regional scale by taking into account the number of sentinel
physicians and medical density of the area of interest. ILI
surveillance networks produce estimates of ILI incidence rates,
but with a 1- to 3-week delay due to the time needed for data
processing and aggregation. This time lag is an issue for public
health decision making [2,7]. Therefore, there is a growing
interest in finding ways to avoid this information gap. Nsoesie
et al [8] reviewed methods for influenza forecasting, including
temporal series and compartmental methods. The authors
showed that these models have limitations. For instance,
influenza activity is not consistent from season to season, which
is a problem for temporal series. Alternative strategies have
been proposed, including using different data sources, such as
meteorological or demographic data, combined with ILI
surveillance network data [9-11] or big data, particularly Web
data [12]. With over 3.2 billion Web users, data flows from the
internet are huge and of all types; they can be from social
networks (eg, Facebook and Twitter), viewing sites, (eg,
YouTube and Netflix), shopping sites, (eg, Amazon and
Cdiscount), but also from sales or rentals website between
particulars (eg, Craigslist and Airbnb). In the case of influenza,
some studies used data from Google [2,4,9,13-16], Twitter
[17,18], or Wikipedia [19-21]. The biggest advantage of Web
data is that they are produced in real time. One of the first and
most famous studies on the use of internet data for detecting
influenza epidemics is Google Flu Trends [13,22], a Web service
operated by Google. They showed that internet users’ searches
are strongly correlated with influenza epidemics. However, for
the influenza season 2012-2013, Google Flu Trends clearly
overestimated the flu epidemic due to the announcement of a
pandemic that increased the internet users’ search frequency,
whereas the pandemic finally did not appear. The lack of
robustness, due to the sensitivity to the internet users’ behavioral
changes and the modifications of the search engine performance
led to stop the Google Flu Trends algorithm [2,23,24].

Some authors updated the Google Flu Trends algorithm by
including data from other sources, such as historical flu
information for instance or temperature [2,13-16]. Yang et al
[2] proposed an approach that relies on Web-based data (Centers
for Diseases Control ILI activity and Google data) and on a
dynamic statistical model based on a least absolute shrinkage

and selection operator (LASSO) regression that allows
overcoming the aforementioned issues. At the national scale,
the correlation between predictions and incidence rates was
0.98.

The internet is not the only data source that can be used to
produce information in real time. With the widespread adoption
of electronic health records (EHRs), hospitals also produce a
huge amount of data that are collected during hospitalization.
Moreover, many hospitals are implementing information
technology tools to facilitate the access to clinical data for
secondary-use purposes. Among these technologies, clinical
data warehouses (CDWs) are one of the solutions for hospital
big data (HBD) exploitation [25-28]. The most famous is the
Informatics for Integrating Biology & the Bedside (i2b2) project,
developed by the Harvard Medical School, which is now used
worldwide for clinical research [29,30]. In addition, it has been
shown that influenza activity changes detected retrospectively
with EHR-based ILI indicators are highly correlated with the
influenza surveillance data [31,32]. However, few HBD-based
models have been developed to monitor influenza [7,33].
Santillana et al proposed a model using HBD and a machine
learning algorithm (support vector machine [SVM]) with a good
performance at the regional scale [7]. The correlation between
estimates and ILI incidence rates ranges from 0.90 to 0.99,
depending on the region and season.

Objectives
It would be interesting to determine whether HBD gives similar,
better, or lower results than internet data with these statistical
models (machine learning and regression). To this aim, we first
evaluated HBD capacity to estimate influenza incidence rates
compared with internet data (Google data). Then, we aim to
find the best statistical model to estimate influenza incidence
rates at the national and regional scales by using HBD or internet
data. As these models have been described in the literature, we
focused on two machine learning algorithms, random forest
(RF) and SVM, and a linear regression model, elastic net.

Methods

Data Sources

Clinical Data Warehouse eHOP
At Rennes University Hospital (France), we developed our own
CDW technology called eHOP. eHOP integrates structured
(laboratory test results, prescriptions, and International
Classification of Diseases 10th Revision, ICD-10, diagnoses)
and unstructured (discharge letter, pathology reports, and
operative reports) patients data. It includes data from 1.2 million
in- and outpatients and 45 million documents that correspond
to 510 million structured elements. eHOP consists of a powerful
search engine system that can identify patients with specific
criteria by querying unstructured data with keywords, or
structured data with querying codes based on terminologies.
eHOP is routinely used for clinical research. The first approach
to obtain eHOP data connected with ILI was to perform different
full-text queries to retrieve patients who had, at least, one
document in their EHR that matched the following search
criteria:
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1. Queries directly connected with flu or ILI were as follows:
• “flu”
• “flu” or “ILI”
• “flu” or “ILI”, in the absence of “flu vaccination”
• “flu vaccination”
• “flu” or “ILI”, only in emergency department reports

2. Queries connected with flu symptoms were as follows:
• “fever” or “pyrexia”
• “body aches” or “muscular pain”
• “fever or pyrexia” or “body aches or muscular pain”
• “flu vaccination”
• “fever or pyrexia” and “body aches or muscular pain”

3. Drug query was as follows:
• “Tamiflu”

The second approach was to leverage structured data with the
support of appropriate terminologies:

1. ICD-10 queries were as follows: J09.x, J10.x, or J11.x
(chapters corresponding to influenza in ICD-10). We
retained all diagnosis-related groups with these codes.

2. Laboratory queries were as follows: influenza testing by
reverse transcription polymerase chain reaction; we retained
test reports with positive or negative results because the
aim was to evaluate more generally ILI symptom
fluctuations and not specifically influenza.

In total, we did 34 queries. For each query, the eHOP search
engine returned all documents containing the chosen keywords
(often, several documents for 1 patient and 1 stay). For query
aggregation, we kept the oldest document for 1 patient and 1
stay and then calculated, for each week, the number of stays
with, at least, one document mentioning the keyword contained
in the query. In this way, we obtained 34 variables from the
CDW eHOP. Multimedia Appendix 1 shows the queries and
the number of concerned stays. We retrieved retrospective data
for the period going from December 14, 2003 to October 24,
2016. This study was approved by the local Ethics Committee
of Rennes Academic Hospital (approval number 16.69).

Google Data
For comparison with internet data, we obtained the frequency
per week of the 100 most correlated internet queries (Multimedia
Appendices 2 and 3) by French users from Google Correlate
[34], and we used this information to retrieve Google Trends
data. Unlike Google Correlate, Google Trends data [35] are
available in real time, but we had to use Google Correlate to
identify the most correlated queries to a signal. The times series
passed into Google Correlate are the national flu time series and
the regional flu time series (Brittany region) obtained from the
French Sentinelles network (see below). The time period used
to calculate the correlation is from January 2004 to October
2016. We used the R package gtrendsR to obtain automatically
Google Trends data from January 4, 2004 to October 24, 2016
[36,37].

Sentinelles Network Data
We obtained the national (Metropolitan France) and regional
(Brittany region, because Rennes University Hospital, from

which EHR data were obtained, is situated in this region) ILI
incidence rates (per 100,000 inhabitants) from the French
Sentinelles network [38-40] from December 28, 2002 to October
24, 2016. We considered these data as the gold standard and
used them as independent historical variables for our models.

Data Preparation
Based on previous studies that included datasets with very
different numbers of explanatory variables according to the used
statistical model [2,7], we built two datasets (one with a large
number of variables and another with a reduced number of
selected variables) from eHOP and Google data, for both the
national and regional analyses (Figure 1).

Each one of these four datasets was completed with historical
Sentinelles data. Therefore, for this study, we used the following:

1. eHOP Complete: this eHOP dataset included all variables
from eHOP and the historical data from the Sentinelles
network with the ILI estimates for the 52 weeks that
preceded the week under study (thus, from t-1 to t-52).

2. eHOP Custom: this eHOP dataset included the 3 most
correlated variables between January 2004 and October
2016 from eHOP for the ILI signal for week t, −1 (t-1), and
−2 (t-2), and historical information from the Sentinelles
network with ILI estimates for t-1 and t-2.

3. Google Complete: this Google dataset included the 100
most ILI activity-correlated queries from Google Trends
and historical information from the Sentinelles network
with ILI estimates for t-1 to t-52.

4. Google Custom: this Google dataset included the 3 most
ILI activity-correlated queries between January 2004 and
October 2016 from Google Trends for t, (t-1), and (t-2) and
historical data from the Sentinelles network with ILI
estimates for (t-1) and (t-2).

Statistical Models
Our test period started on December 28, 2009 and finished on
October 24, 2016. We fitted our models using a training dataset
that corresponded to the data for the previous 6 years. Each
model was dynamically recalibrated every week to incorporate
new information. For instance, to estimate the ILI activity
fluctuations for the week starting on December 28, 2009, the
training data consisted of data from December 21, 2003 to
December 21, 2009.

Elastic Net
Elastic net is a regularized regression method that takes into
account the correlation between explanatory variables and also
a large number of predictors [41]. It combines the penalties of
the LASSO and Ridge methods, thus allowing keeping the
advantages of both methods and overcoming their limitations
[42,43]. With datasets that may have up to 152 potentially
correlated variables, we performed the elastic net regression
analysis using the R package glmnet and the associated functions
[36,44]. We fixed a coefficient alpha equal to.5 to give the same
importance to the LASSO and Ridge constraints. We optimized
the shrinkage parameter lambda via a 10-fold cross validation.
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Figure 1. Schematic representation of the study design, including the data preparation and data modeling steps. ILI: influenza-like illness; SVM: support
vector machine; ARIMA: autoregressive integrated moving average.

Random Forest
RF model combines decision trees constructed at training time
using the general bootstrap aggregating technique (known as
bagging) [45]. We used the R package randomForest to create
RF models with a number of decision trees equal to 1500
[36,46].

Support Vector Machine
SVM is a supervised machine learning algorithm that can be
used for classification or regression analyses [47]. Unlike
multivariate regression models, SVM can learn nonlinear
functions with the kernel trick that maps independent variables
in a higher dimensional feature space. As Santillana et al [7],
we used the linear kernel and optimized the cost parameter via
a 10-fold cross validation with the R package e1071 [36,48].

Validity
Elastic net is a model that fulfills some assumptions on residuals.
Means and variances must be constant, and residuals must be
not correlated. Thus, residuals are called white noise. To test
the stationarity and whiteness, we used Dickey Fuller’s and
Box-Pierce’s tests available from the R packages tseries and
stats [36,49]. When assumptions were not respected, we fitted
residuals with a model of temporal series, called autoregressive
integrated moving average (ARIMA) model. For RF and SVM,
assumptions on residuals are not required. However, for

comparison purpose, we tested them with the ARIMA model
on residuals (Multimedia Appendices 4 and 5). We also assessed
the calibration of the models by plotting the estimates against
the real observations and by adding the regression line [50]
(Multimedia Appendices 6 and 7).

Evaluation
We compared our ILI estimates with ILI incidence rates from
the Sentinelles network by calculating different indicators. The
mean squared error (MSE); Pearson correlation coefficient
(PCC); variation in the height of the epidemic peak (∆H), which
corresponds to the difference between the height of the ILI
incidence rate peak during the epidemic period estimated by
the models and the height estimated by the Sentinelles network;
and prediction lag (∆L), which corresponds to the time
difference between the ILI incidence rate peak estimated by the
models and the peak estimated by the Sentinelles network, were
calcuated. For the global comparison (ie, the entire study period),
we calculated only the MSE and PCC. We calculated the four
metrics only for the epidemic periods (plus 2 weeks before the
start and after the end of the epidemic). The start and end date
of epidemics were obtained from the Sentinelles network [39].
Indeed, clinicians want to know when an epidemic starts and
finishes, as well as its amplitude and severity. Therefore,
interepidemic periods are less important. We also calculated
the mean of each indicator for each influenza season to assess
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the model robustness. We also added two indicators to the mean
of (∆H) and (∆L): the mean of |∆H| and |∆L|. We used the mean
of (∆H) to assess whether the models tended to underestimate
or overestimate the peak calculated by the Sentinelles network,
and the mean of (∆L) to determine whether the predictions made
by our models were too late or too in advance relative to the
Sentinelles data. The mean of |∆H| and |∆L| allowed us to assess
the estimate variability.

Results

Principal Results
Here, we show the results we obtained with the four datasets
and three models—RF, SVM, and elastic net+residuals fitted
by ARIMA (ElasticNet+ARIMA). The model on residuals was
required to fulfill the assumptions for elastic net but not for the
RF and SVM models. All results are presented in Multimedia
Appendices 4 and 5. Moreover, we present two influenza
outbreaks, including the 2010-2011 season (flu outbreak period
for which the best estimates were obtained with all models) and
the 2013-2014 season (flu outbreak period for which the worst
estimates were obtained with all models; Multimedia Appendix
8). The calibration plots are in presented in Multimedia
Appendices 7 and 9.

National Analysis

Dataset Comparison
PCC ranged from 0.947 to 0.980 when using the eHOP datasets
(Multimedia Appendix 8) and from 0.937 to 0.978 with the
Google datasets. MSE ranged from 2292 to 866 for the eHOP
and from 2607 to 968 for the Google datasets. The mean PCC
values during epidemic periods varied from 0.90 to 0.96 for the
eHOP and from 0.87 to 0.96 for the Google datasets. The mean
MSE values ranged from 7597 to 2664 for the eHOP and from
9139 to 2805 for the Google datasets.

Model Comparison
The eHOP Custom dataset gave the best results with the SVM
model and ElasticNet+ARIMA (Multimedia Appendix 8). The
SVM model and ElasticNet+ARIMA showed similar
performance concerning the global activity (PCC=0.98; MSE,
<900) and also during epidemic periods (mean values), although
PCC decreased (0.96) and the MSE increased (> 2500). Both
models tended to overestimate the height of the epidemic peaks
(∆H=6 with SVM; ∆H=26 with ElasticNet+ARIMA), but the
SVM model was slightly more accurate (|∆H|=19 for SVM;
|∆H|=30 for the ElasticNet+ARIMA model). Conversely, the
SVM model showed a larger prediction lag (∆L=+0.83). Figure
2 illustrates the estimates obtained with the best models (SVM
and ElasticNet+ARIMA with the dataset eHop Custom).

The same figure with the dataset Google Custom is presented
in Multimedia Appendix 10. In the same way, there is a figure

with eHOP Custom and Google Custom datasets with the model
ElasticNet+ARIMA presented in Multimedia Appendix 11.

For the outbreak of 2010-2011, eHOP Custom using
ElasticNet+ARIMA gave the best PCC (0.98) and the best MSE
(1222). With this model, there was a slight overestimation of
the height of the epidemic peak (∆H=23) and a prediction lag
of 1 week. For the 2013-2014 outbreak, eHOP Custom using
SVM gave the best PCC (0.95) and MSE (996), as well as the
best ∆H (19) and prediction lag (1 week; Multimedia Appendix
8).

Regional Analysis
Figure 3 shows that ILI incidence rate variations were more
important at the regional than the national level. For this reason,
PCC decreased and MSE increased by the order of magnitude.
The same figure with the dataset Google Custom is presented
in Multimedia Appendix 12.

Dataset Comparison
PCC ranged from 0.911 to 0.923 (Multimedia Appendix 8) with
the eHOP and from 0.890 to 0.912 with the Google datasets.
MSE varied from 2906 to 2364 and from 3348 to 2736 for the
eHOP and Google datasets, respectively. During epidemic
periods, the mean PCC value ranged from 0.83 to 0.86 and from
0.70 to 0.83 for the eHOP and Google datasets, respectively.
The mean MSE values ranged from 7423 to 5893 for the eHOP
and from 9598 to 7122 for the Google datasets.

Model Comparison
Like at the national scale, eHOP Custom allowed obtaining the
best PCC and MSE, and the SVM (PCC=0.923; MSE=2364)
and ElasticNet+ARIMA (PCC=0.918; MSE=2451) models
showed similar performances (Multimedia Appendix 8). Similar
results were obtained also for the mean values during epidemic
periods. Nevertheless, the PCC decreased (0.86 for SVM and
0.84 for ElasticNet+ARIMA), and the MSE increased (6050
for SVM and 5999 for ElasticNet+ARIMA). Both models tended
to underestimate the height of the epidemic peaks (∆H=−60
with SVM; ∆H=−32 with ElasticNet+ARIMA). The SVM model
gave better PCC and MSE than the ElasticNet+ARIMA model,
but ElasticNet+ARIMA was slightly more accurate for the
epidemic peak height (|∆H|=60 for SVM; |∆H|=38 for the
ElasticNet+ARIMA model). Although both models had a
prediction lag (∆L=+0.3), the ElasticNet+ARIMA model
absolute lag value was smaller than that of SVM (|∆L|=0.7;
|∆L|=1). For the 2010-2011 outbreak, eHOP Complete using
the RF model gave the best PCC (0.92) and MSE (4263); with
this model, there was a slight peak underestimation (∆H=−40)
but no prediction lag. For the 2013-2014 epidemic, the best
PCC (0.78) and MSE (2113) were obtained with the Google
Complete dataset and the ElasticNet+ARIMA model; there was
a slight epidemic peak height underestimation (∆H=−26) and
1 week of prediction lag.
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Figure 2. National influenza-like illness (ILI) activity retrospective estimates obtained using the eHOP Custom dataset and the elastic net model with
residuals fitted or the support vector machine model compared with the ILI activity levels from the French national Sentinelles networks. Global signal
and 2010-2011 and 2013-2014 outbreaks are presented. SVM: support vector machine.
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Figure 3. Regional influenza-like illness (ILI) activity retrospective estimates obtained using the eHOP Custom dataset and the elastic net model with
residuals fitted or the support vector machine model compared with the ILI activity levels from the French regional Sentinelles networks. Global signal
and 2010-2011 and 2013-2014 outbreaks are presented. SVM: support vector machine.

Discussion

Data
Here, we show that HBD in combination with flu activity-level
data from a national surveillance network allows accurately
predicting ILI incidence rate at the national and regional scale
and outperform Google data in most cases. The correlation
coefficients obtained for the French data are comparable to those
reported by studies on US data [2,7]. At the national and regional
level, the best PCC and the best MSE during the entire study
period or during epidemics were obtained using the eHOP
Custom dataset. Moreover, the PCC and MSE values obtained
with the eHOP datasets were better than those obtained with
the Google datasets, particularly at the regional level (PCC
0.911-0.923 vs 0.890-0.912; MSE 2906-2364 vs 3348-2736,
respectively; Multimedia Appendix 8). However, the national
signal is smoother and less noisy than the regional signal; the
contribution of other data sources, such as hospital data or Web
data, in addition to historical influenza data is more important
at the regional level (Multimedia Appendices 4 and 5). The
contribution of these external sources being less important at
the national level, the differences observed between hospital
data and Web data at this scale could be more significant.

Like internet data, some HBD can be obtained in near real time,
especially records from emergency departments that are
available on the same day or the day after. This is the most

important data source for our models using eHOP datasets.
Some other data, such as laboratory results, are available only
on a weekly basis; however, they are not the most important
data source for our models.

Moreover, in comparison to internet data, HBD have some
additional advantages. First, data extracted from CDWs are real
health data can give information that cannot be extracted from
internet data, particularly information about patients (sex, age,
and comorbidities) [51]. In addition, an important clinical aspect
is to determine the epidemic severity. With HBD, it is possible
to gauge this parameter by taking into account the number of
patients who were admitted in intensive care or died as the result
of flu. Second, some CDW data (particularly emergency
department discharge summaries and laboratory test results)
can confirm that people were really affected by influenza or ILI
symptoms. On the other hand, people can make internet queries
not because they are ill, but for other people, for prevention
purposes or just because it is a topical subject. Third, HBD could
also be used to estimate the incidence rates of diseases that do
not generate internet activity (eg, diseases without or with little
media coverage or that are not considered interesting by the
general population). Fourth, there is a spatial decorrelation
between internet data and the regional estimates that were not
observed with the eHOP data. It is quite reasonable that
hospital-based data give a better estimate of regional epidemics,
although currently, we have only data from Rennes University
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Hospital that might not be representative of the entire Brittany
region.

A major HBD limitation is that, generally, clinical data are not
publicly available. In our case, we could only access the Rennes
University Hospital HBD. However, the epidemic peak in
Brittany could have occurred earlier or later relative to the
national peak, and this could have introduced a bias in our
estimation. We can hypothesize that ILI estimates, particularly
nationwide, might be improved if we could extract information
from HBD in other regions. In the United States, a patient
research system allows aggregating patient observations from
a large number of hospitals in a uniform way [52]. In France,
several initiatives have been developed to create search systems.
For instance, an ongoing project (Réseau interrégional des
Centres de Données Cliniques) [53] in the Northwest area of
France associates six University Hospital centers (Angers, Brest,
Nantes, Poitiers, and Rennes et Tours) and Orleans Regional
Hospital Centre, thus collecting data on patients in the Bretagne,
Centre-Val de Loire, and Pays de la Loire regions. This
corresponds to 15.5% of Metropolitan France and 14.4% of the
entire French population. Another way to aggregate patient data
could be a cloud-based platform, and we are currently setting
up this kind of architecture; this platform will integrate two
University Hospital centers, Brest and Rennes, the French health
reimbursement database (Système national d'information
interrégimes de l'Assurance Maladie) and registries, such as the
birth defect registry or cancer registry.

Statistical Models
Regarding the statistical models, we show that SVM and elastic
net with ARIMA model are fairly comparable with PCC ranging
from 0.970 to 0.980 at the national scale and from 0.890 to 0.923
at the regional scale. The SVM and elastic net models in
combination with the eHOP custom dataset were the most robust
models, although they did not always give the best results.
Indeed, they showed the best performance in term of PCC and
MSE for the global signal and also for the mean values.
Nevertheless, these models have some limits. The main
limitation of the SVM model is the very slow parameter
optimization when there are many variables. With the SVM
model, it can be important to preselect the important variables
to reduce the dataset size to improve the optimization speed.
For this, one needs a good knowledge of the available data,
which may be difficult when using big data. On the other hand,
elastic net shows good performance with many variables, which
is an advantage when the most relevant variables to estimate
ILI incidence rates are not known in advance. The elastic net
model is a parametric model that fulfills certain assumptions
on residuals, differently from the SVM model. With elastic net,
residuals must be fitted to have a statistically valid model.
Nevertheless, if we had to choose a model, we would prefer
SVM with the eHOP Custom dataset because it has a better
PCC than elastic net at the regional scale.

Another limitation is that indicators are better for the global
period than for epidemic periods. This implies that models are
less efficient during flu outbreaks, while clinical concerns are
higher during epidemics when good estimates of the outbreak
starting date, amplitude, and end are needed.

Finally, the results of our models with Web data may have been
overestimated due to the way we obtained data from Google
Correlate. Indeed, Google Correlate used information that we
did not have at the beginning of our test period. The time period
for our time series passed into Google Correlate is from January
2004 to October 2016. But, the beginning of our test period for
our models is January 2010. To be more precise, we should
recalculate the correlation coefficients for each week to predict
with the data available at that time.

In the same way, to custom datasets, we calculated the 3 most
correlated variables on a time period including our test period.
To compare the results, we built another dataset from eHOP,
including the 3 most correlated variables to ILI regional signal
between December 2003 and December 2009 (before our test
period), and we applied an ElasticNet+ARIMA model. In this
way, we kept 2 variables on the 3 present in the eHOP custom
dataset. The difference does not seem significant (Multimedia
Appendix 6), but it would be interesting to test this hypothesis
with all models at the national and regional scale with Google
and eHOP custom datasets.

Perspectives
Future research could address clinical issues not only nationally
or regionally but also at finer spatial resolutions such as a city
like Lu et al did [54], a health care institution or in
subpopulations. Indeed, by predicting epidemics, it will be
possible to organize hospitals during epidemics (eg, bed
planning and anticipating overcrowding). Moreover, in this
study, we compared internet and HBD data; however, hybrid
systems could be developed to take advantage of multiple
sources [55,56]. For instance, internet data might avoid the limit
of the local source linked to the choice or availability of HBD.
Data collected by volunteers who self-report symptoms in near
real time could be exploited [57]. Similarly, by combining
models, we could retain the benefits of each of them and
improve the estimates of ILI incidence rates. For example, we
could use another algorithm, such as stacking [58], to
concomitantly use the SVM and elastic net models. We could
also test other kernels than the linear kernel for SVM models.
Finally, we carried out a retrospective study using various
models with clinical data in combination with the flu activity
from the Sentinelles network to estimate ILI incidence rates in
real time. Our models need now to be tested to determine
whether they can anticipate and predict ILI incidence rates.

Conclusions
Here, we showed that HBD is a data source that allows
predicting the ILI activity as well or even better than internet
data. This can be done using two types of models with similar
performance—SVM (a machine learning model) and elastic net
(a model of regularized regression). This is a promising way
for monitoring ILI incidence rates at the national and local
levels. HBD presents several advantages compared with internet
data. First, they are real health data and can give information
about patients (sex, age, and comorbidities). This could allow
for making predictions on ILI activity targeted to a specific
group of people. Second, hospital data can be used to determine
the epidemic severity by taking into account the number of
patients who were admitted in intensive care or died as a result
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of flu. Third, hospital data (particularly the emergency
department discharge summaries and laboratory test results)
can confirm that people were really affected by influenza.
Finally, HBD could also be used to estimate the incidence rates
of diseases that do not generate internet activity. Although
massive data cannot take the place of traditional influenza

surveillance methods at this time, they could be used to complete
them. For instance, real-time forecasting is necessary for
decision making. It can also be used to manage the patients’
flow in general practitioners’ offices and hospitals, particularly
emergency departments.
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eHOP queries (with the number of concerned hospital stays from 2003 to 2016).
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Multimedia Appendix 2
The 100 most correlated Google queries at national level.
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Multimedia Appendix 3
The 100 most correlated Google queries at regional level.
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Multimedia Appendix 4
Accuracy metrics for all seasons obtained with all models for the national scale.
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Multimedia Appendix 5
Accuracy metrics for all seasons obtained with all models for the regional scale.
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Multimedia Appendix 6
Comparison between two datasets with ElasticNet + ARIMA model: Dataset 1 corresponds to the dataset called eHOP Custom
used in the paper and including the 3 most correlated variables to ILI signal between December 2009 to October 2016 (our test
period). Dataset 2 includes the 3 most correlated variables to ILI signal between December 2003 to December 2009 (before our
test period).
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Multimedia Appendix 7
National calibration.
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Multimedia Appendix 8
Accuracy metrics for the 2010-2011 (flu outbreak period for which the best estimates were obtained with all models) and 2013-2014
(flu outbreak period for which the worst estimates were obtained with all models) seasons. PCC and MSE for the global period
(Global) and mean values (Means) of all indicators for each model during the epidemic periods. In bold, the best results for each
dataset. a. Data for the whole France. b. Data for the Brittany region.
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Multimedia Appendix 9
Regional calibration.
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Multimedia Appendix 10
National ILI activity retrospective estimates obtained using the Google Custom dataset and the Elastic Net model with residuals
fitted (pink dashed line) or the SVM model (blue dotted line) compared with the ILI activity levels from the French national
Sentinelles networks (green solid line). a. Global signal. b. 2010-2011 and c. 2013-2014 outbreaks.
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Multimedia Appendix 11
National ILI activity retrospective estimates obtained using the Google Custom dataset and the Elastic Net model (blue dotted
line) or eHOP Custom dataset and the Elastic Net model (pink dashed line) compared with the ILI activity levels from the French
national Sentinelles networks (green solid line). a. Global signal. b. 2010-2011 and c. 2013-2014 outbreaks.
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Multimedia Appendix 12
Regional ILI activity retrospective estimates obtained using the Google Custom dataset and the Elastic Net model with residuals
fitted (pink dashed line) or the SVM model (blue dotted line) compared with the ILI activity levels from the French regional
Sentinelles networks (green solid line). a. Global signal. b. 2010-2011 and c. 2013-2014 outbreaks.

[PNG File, 159KB - publichealth_v4i4e11361_app12.png ]

References
1. Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS. Strategies for mitigating an influenza pandemic.

Nature 2006 Jul 27;442(7101):448-452. [doi: 10.1038/nature04795] [Medline: 16642006]
2. Yang S, Santillana M, Kou S. Accurate estimation of influenza epidemics using Google search data via ARGO. Proceedings

of the National Academy of Sciences 2015 Nov 24:14473. [doi: 10.1038/srep25732]
3. Si-Tahar M, Touqui L, Chignard M. Innate immunity and inflammation--two facets of the same anti-infectious reaction.

Clin Exp Immunol 2009 May;156(2):194-198 [FREE Full text] [doi: 10.1111/j.1365-2249.2009.03893.x] [Medline:
19302246]

4. Yang W, Lipsitch M, Shaman J. Inference of seasonal and pandemic influenza transmission dynamics. Proc Natl Acad Sci
USA 2015 Feb 17;112(9):2723-2728. [doi: 10.1073/pnas.1415012112] [Medline: 25730851]

5. Nichol KL. Cost-benefit analysis of a strategy to vaccinate healthy working adults against influenza. Arch Intern Med 2001
Mar 12;161(5):749-759. [Medline: 11231710]

6. Fleming DM, Van Der Velden J, Paget WJ. M. Fleming WJP J van der Velden. The evolution of influenza surveillance in
Europe and prospects for the next 10 years. Vaccine ? 2003;21:1753.

7. Santillana M, Nguyen AT, Louie T, Zink A, Gray J, Sung I, et al. Cloud-based Electronic Health Records for Real-time,
Region-specific Influenza Surveillance. Sci Rep 2016 Dec 11;6:25732 [FREE Full text] [doi: 10.1038/srep25732] [Medline:
27165494]

8. Nsoesie E, Brownstein J, Ramakrishnan N. A systematic review of studies on forecasting the dynamics of influenza
outbreaks. Influenza and Other Respiratory Viruses ? 2014;8:316.

9. Chretien J, George D, Shaman J, Chitale RA, McKenzie FE. Influenza forecasting in human populations: a scoping review.
PLoS One 2014;9(4):e94130 [FREE Full text] [doi: 10.1371/journal.pone.0094130] [Medline: 24714027]

10. Soebiyanto RP, Adimi F, Kiang RK. Modeling and predicting seasonal influenza transmission in warm regions using
climatological parameters. PLoS One 2010 Mar 01;5(3):e9450 [FREE Full text] [doi: 10.1371/journal.pone.0009450]
[Medline: 20209164]

JMIR Public Health Surveill 2018 | vol. 4 | iss. 4 | e11361 | p.10http://publichealth.jmir.org/2018/4/e11361/
(page number not for citation purposes)

Poirier et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

https://publichealth.jmir.org/article/downloadSuppFile/11361/89324
https://publichealth.jmir.org/article/downloadSuppFile/11361/89324
https://publichealth.jmir.org/article/downloadSuppFile/11361/78983
https://publichealth.jmir.org/article/downloadSuppFile/11361/78983
https://publichealth.jmir.org/article/downloadSuppFile/11361/78984
https://publichealth.jmir.org/article/downloadSuppFile/11361/78984
https://publichealth.jmir.org/article/downloadSuppFile/11361/78986
https://publichealth.jmir.org/article/downloadSuppFile/11361/78986
https://publichealth.jmir.org/article/downloadSuppFile/11361/78985
https://publichealth.jmir.org/article/downloadSuppFile/11361/78985
http://dx.doi.org/10.1038/nature04795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16642006&dopt=Abstract
http://dx.doi.org/10.1038/srep25732
https://doi.org/10.1111/j.1365-2249.2009.03893.x
http://dx.doi.org/10.1111/j.1365-2249.2009.03893.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19302246&dopt=Abstract
http://dx.doi.org/10.1073/pnas.1415012112
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25730851&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=11231710&dopt=Abstract
http://dx.doi.org/10.1038/srep25732
http://dx.doi.org/10.1038/srep25732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27165494&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0094130
http://dx.doi.org/10.1371/journal.pone.0094130
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24714027&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0009450
http://dx.doi.org/10.1371/journal.pone.0009450
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20209164&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


11. Shaman J, Karspeck A, Yang W, Tamerius J, Lipsitch M. Real-time influenza forecasts during the 2012-2013 season. Nat
Commun 2013;4:2837 [FREE Full text] [doi: 10.1038/ncomms3837] [Medline: 24302074]

12. Milinovich GJ, Williams GM, Clements ACA, Hu W. Internet-based surveillance systems for monitoring emerging infectious
diseases. Lancet Infect Dis 2014 Feb;14(2):160-168. [doi: 10.1016/S1473-3099(13)70244-5] [Medline: 24290841]

13. Ginsberg J, Mohebbi MH, Patel RS, Brammer L, Smolinski MS, Brilliant L. Detecting influenza epidemics using search
engine query data. Nature 2009 Feb 19;457(7232):1012-1014. [doi: 10.1038/nature07634] [Medline: 19020500]

14. Shaman J, Karspeck A. Forecasting seasonal outbreaks of influenza. Proceedings of the National Academy of Sciences
2012 Nov 26;109(50):20425-20430. [doi: 10.1073/pnas.1208772109] [Medline: 23184969]

15. Olson DR, Konty KJ, Paladini M, Viboud C, Simonsen L. Reassessing Google Flu Trends data for detection of seasonal
and pandemic influenza: a comparative epidemiological study at three geographic scales. PLoS Comput Biol
2013;9(10):e1003256 [FREE Full text] [doi: 10.1371/journal.pcbi.1003256] [Medline: 24146603]

16. Zhang Y, Bambrick H, Mengersen K, Tong S, Hu W. Using Google Trends and ambient temperature to predict seasonal
influenza outbreaks. Environment International 2018;117:91.

17. Broniatowski DA, Paul MJ, Dredze M. National and local influenza surveillance through Twitter: an analysis of the
2012-2013 influenza epidemic. PLoS One 2013;8(12):e83672 [FREE Full text] [doi: 10.1371/journal.pone.0083672]
[Medline: 24349542]

18. Paul MJ, Dredze M, Broniatowski D. Twitter improves influenza forecasting. PLoS Curr 2014 Oct 28;6 [FREE Full text]
[doi: 10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117] [Medline: 25642377]

19. Hickmann KS, Fairchild G, Priedhorsky R, Generous N, Hyman JM, Deshpande A, et al. Forecasting the 2013-2014
influenza season using Wikipedia. PLoS Comput Biol 2015 May;11(5):e1004239 [FREE Full text] [doi:
10.1371/journal.pcbi.1004239] [Medline: 25974758]

20. Generous N, Fairchild G, Deshpande A, Del Valle SY, Priedhorsky R. Global disease monitoring and forecasting with
Wikipedia. PLoS Comput Biol 2014 Nov;10(11):e1003892 [FREE Full text] [doi: 10.1371/journal.pcbi.1003892] [Medline:
25392913]

21. McIver DJ, Brownstein JS. Wikipedia usage estimates prevalence of influenza-like illness in the United States in near
real-time. PLoS Comput Biol 2014 Apr;10(4):e1003581 [FREE Full text] [doi: 10.1371/journal.pcbi.1003581] [Medline:
24743682]

22. Carneiro HA, Mylonakis E. Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin Infect
Dis 2009 Nov 15;49(10):1557-1564. [doi: 10.1086/630200] [Medline: 19845471]

23. Lazer D, Kennedy R, King G, Vespignani A. Big data. The parable of Google Flu: traps in big data analysis. Science 2014
Mar 14;343(6176):1203-1205. [doi: 10.1126/science.1248506] [Medline: 24626916]

24. Butler D. When Google got flu wrong. Nature 2013 Feb 14;494(7436):155-156. [doi: 10.1038/494155a] [Medline: 23407515]
25. Hanauer DA. EMERSE: The Electronic Medical Record Search Engine. 2006 Presented at: AMIA Annual Symposium

Proceedings; 2006/11/11; Washington p. 941.
26. Murphy SN, Mendis ME, Berkowitz DA. Integration of Clinical and Genetic Data in the i2b2 Architecture. 2006 Presented

at: AMIA Annual Symposium Proceedings; 2006; Washington p. 1040.
27. Lowe HJ, Ferris TA, Hernandez PM. STRIDE ? An Integrated Standards-Based Translational Research Informatics Platform.

2009 Presented at: AMIA Annual Symposium Proceedings; 2009; San Francisco p. 391.
28. Cuggia M, Garcelon N, Campillo-Gimenez B. Roogle: an information retrieval engine for clinical data. Studies in Health

Technology and Informatics 2011;169:8. [doi: 10.3233/978-1-60750-806-9-584]
29. Murphy SN, Weber G, Mendis M, Gainer V, Chueh HC, Churchill S, et al. Serving the enterprise and beyond with informatics

for integrating biology and the bedside (i2b2). J Am Med Inform Assoc 2010;17(2):124-130 [FREE Full text] [doi:
10.1136/jamia.2009.000893] [Medline: 20190053]

30. Murphy S, Wilcox A. Mission and Sustainability of Informatics for Integrating Biology and the Bedside (i2b2). EGEMS
(Wash DC) 2014;2(2):1074 [FREE Full text] [doi: 10.13063/2327-9214.1074] [Medline: 25848608]

31. Viboud C, Charu V, Olson D, Ballesteros S, Gog J, Khan F, et al. Demonstrating the use of high-volume electronic medical
claims data to monitor local and regional influenza activity in the US. PLoS One 2014;9(7):e102429 [FREE Full text] [doi:
10.1371/journal.pone.0102429] [Medline: 25072598]

32. Bouzillé G, Poirier C, Campillo-Gimenez B, Aubert ML, Chabot M, Chazard E, et al. Leveraging hospital big data to
monitor flu epidemics. Computer Methods and Programs in Biomedicine 2018:160.

33. Santillana M, Nsoesie EO, Mekaru SR, Scales D, Brownstein JS. Using clinicians' search query data to monitor influenza
epidemics. Clin Infect Dis 2014 Nov 15;59(10):1446-1450 [FREE Full text] [doi: 10.1093/cid/ciu647] [Medline: 25115873]

34. Google Correlate. URL: https://www.google.com/trends/correlate [accessed 2018-06-19] [WebCite Cache ID 70IClAsSD]
35. Google Trends. URL: https://trends.google.fr/trends/?geo=FR [accessed 2018-06-20] [WebCite Cache ID 70JjgMxmh]
36. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical

Computing 2015 [FREE Full text]
37. Massicotte P, Eddelbuettel D. gtrendsR: Perform and Display Google Trends Queries. https://github.com/PMassicotte/gtrendsR

2017 [FREE Full text]

JMIR Public Health Surveill 2018 | vol. 4 | iss. 4 | e11361 | p.11http://publichealth.jmir.org/2018/4/e11361/
(page number not for citation purposes)

Poirier et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://europepmc.org/abstract/MED/24302074
http://dx.doi.org/10.1038/ncomms3837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24302074&dopt=Abstract
http://dx.doi.org/10.1016/S1473-3099(13)70244-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24290841&dopt=Abstract
http://dx.doi.org/10.1038/nature07634
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19020500&dopt=Abstract
http://dx.doi.org/10.1073/pnas.1208772109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23184969&dopt=Abstract
http://dx.plos.org/10.1371/journal.pcbi.1003256
http://dx.doi.org/10.1371/journal.pcbi.1003256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24146603&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0083672
http://dx.doi.org/10.1371/journal.pone.0083672
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24349542&dopt=Abstract
https://dx.doi.org/10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117
http://dx.doi.org/10.1371/currents.outbreaks.90b9ed0f59bae4ccaa683a39865d9117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25642377&dopt=Abstract
http://dx.plos.org/10.1371/journal.pcbi.1004239
http://dx.doi.org/10.1371/journal.pcbi.1004239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25974758&dopt=Abstract
http://dx.plos.org/10.1371/journal.pcbi.1003892
http://dx.doi.org/10.1371/journal.pcbi.1003892
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25392913&dopt=Abstract
http://dx.plos.org/10.1371/journal.pcbi.1003581
http://dx.doi.org/10.1371/journal.pcbi.1003581
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24743682&dopt=Abstract
http://dx.doi.org/10.1086/630200
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19845471&dopt=Abstract
http://dx.doi.org/10.1126/science.1248506
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24626916&dopt=Abstract
http://dx.doi.org/10.1038/494155a
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23407515&dopt=Abstract
http://dx.doi.org/10.3233/978-1-60750-806-9-584
http://europepmc.org/abstract/MED/20190053
http://dx.doi.org/10.1136/jamia.2009.000893
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20190053&dopt=Abstract
http://europepmc.org/abstract/MED/25848608
http://dx.doi.org/10.13063/2327-9214.1074
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25848608&dopt=Abstract
http://dx.plos.org/10.1371/journal.pone.0102429
http://dx.doi.org/10.1371/journal.pone.0102429
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25072598&dopt=Abstract
http://europepmc.org/abstract/MED/25115873
http://dx.doi.org/10.1093/cid/ciu647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25115873&dopt=Abstract
https://www.google.com/trends/correlate
http://www.webcitation.org/70IClAsSD
https://trends.google.fr/trends/?geo=FR
http://www.webcitation.org/70JjgMxmh
https://www.R-project.org/
https://github.com/PMassicotte/gtrendsR
http://www.w3.org/Style/XSL
http://www.renderx.com/


38. Valleron AJ, Bouvet E, Garnerin P. A computer network for the surveillance of communicable diseases: the French
experiment. American Journal of Public Health 1986;76:92.

39. Flahault A, Blanchon T, Dorléans Y, Toubiana L, Vibert JF, Valleron AJ. Virtual surveillance of communicable diseases:
a 20-year experience in France. Stat Methods Med Res 2006 Oct;15(5):413-421. [doi: 10.1177/0962280206071639]
[Medline: 17089946]

40. Réseau Sentinelles. URL: https://websenti.u707.jussieu.fr/sentiweb [accessed 2018-06-19] [WebCite Cache ID 70IEHtetc]
41. Zou H, Hastie T. Regularization and variable selection via the Elastic Net. Journal of the Royal Statistical Society 2005;67:320.
42. Kennard EH. Ridge regression: biaised estimation for nonorthogonal problems. Technometrics 1970;1.
43. Tibshirani R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society 1996;58:267-288.
44. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal

of Statistical Software 2010;33:1-22.
45. Breiman L. Random Forests. Machine Learning 2001;45:5-32. [doi: 10.1023/A:1010933404324]
46. Liaw A, Wiener M. Classification and Regression by randomForest. R News 2002;2:18-22.
47. Cortes C, Vapnik V. Support-vector networks. Machine Learning 1995;20(3):273-297. [doi: 10.1007/BF00994018]
48. Meyer D, Dimitriadou E, Hornik K. e1071: Misc Functions of the Department of Statistics. Probability Theory Group

(Formerly: E1071) https://CRAN.R-project.org/package=e1071 2015.
49. Trapletti A, Hornik K. tseries: Time Series Analysis and Computational Finance. http://CRAN.R-project.org/package=tseries

2015.
50. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al. Assessing the performance of prediction

models: a framework for some traditional and novel measures. Epidemiology 2010:128-138.
51. Olson D, Heffernan R, Paladini M, Konty K, Weiss D, Mostashari F. Monitoring the Impact of Influenza by Agemergency

Department Fever and Respiratory Complaint Surveillance in New York City. PLOS Medicine 2007;4(8).
52. McMurry AJ, Murphy SN, MacFadden D, Weber G, Simons WW, Orechia J, et al. SHRINE: enabling nationally scalable

multi-site disease studies. PLoS One 2013;8(3):e55811 [FREE Full text] [doi: 10.1371/journal.pone.0055811] [Medline:
23533569]

53. Bouzillé G, Westerlynck R, Defossez G. Sharing health big data for research - A design by use cases: the INSHARE platform
approach. Studies in Health Technology and Informatics 2017.

54. Lu F, Hou S, Baltrusaitis K, Shah M, Leskovec J, Sosic R. Accurate Influenza Monitoring and Forecasting Using Novel
Internet Data Streams: A Case Study in the Boston Metropolis. JMIR Public Health Surveillance 2018;4(1).

55. Groupment Interrégional de Recherche Clinique et d'Innovation Grand Ouest. URL: https://www.girci-go.org/ [accessed
2018-06-20] [WebCite Cache ID 70JklABe6]

56. Simonsen L, Gog JR, Olson D, Viboud C. Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally
Relevant Systems. J Infect Dis 2016 Dec 01;214:S380-S385 [FREE Full text] [doi: 10.1093/infdis/jiw376] [Medline:
28830112]

57. Bansal S, Chowell G, Simonsen L, Vespignani A, Viboud C. Big Data for Infectious Disease Surveillance and Modeling.
J Infect Dis 2016 Dec 01;214:S375-S379 [FREE Full text] [doi: 10.1093/infdis/jiw400] [Medline: 28830113]

58. Wolpert DH. Stacked generalization. Neural Networks 1992.

Abbreviations
ARIMA: autoregressive integrated moving average
CDW: clinical data warehouse
EHR: electronic health record
HBD: hospital big data
ILI: influenza-like illness
LASSO: least absolute shrinkage and selection operator
MSE: mean squared error
PCC: Pearson correlation coefficient
RF: random forest
SVM: support vector machine
∆H: epidemic peak
∆L: prediction lag

JMIR Public Health Surveill 2018 | vol. 4 | iss. 4 | e11361 | p.12http://publichealth.jmir.org/2018/4/e11361/
(page number not for citation purposes)

Poirier et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://dx.doi.org/10.1177/0962280206071639
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17089946&dopt=Abstract
https://websenti.u707.jussieu.fr/sentiweb
http://www.webcitation.org/70IEHtetc
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/BF00994018
http://dx.plos.org/10.1371/journal.pone.0055811
http://dx.doi.org/10.1371/journal.pone.0055811
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23533569&dopt=Abstract
https://www.girci-go.org/
http://www.webcitation.org/70JklABe6
http://europepmc.org/abstract/MED/28830112
http://dx.doi.org/10.1093/infdis/jiw376
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28830112&dopt=Abstract
http://europepmc.org/abstract/MED/28830113
http://dx.doi.org/10.1093/infdis/jiw400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28830113&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by G Eysenbach; submitted 21.06.18; peer-reviewed by B Polepalli Ramesh, F Lu; comments to author 08.08.18; revised
version received 10.09.18; accepted 10.09.18; published 17.12.18

Please cite as:
Poirier C, Lavenu A, Bertaud V, Campillo-Gimenez B, Chazard E, Cuggia M, Bouzillé G
Real Time Influenza Monitoring Using Hospital Big Data in Combination with Machine Learning Methods: Comparison Study
JMIR Public Health Surveill 2018;4(4):e11361
URL: http://publichealth.jmir.org/2018/4/e11361/ 
doi:10.2196/11361
PMID:

©Canelle Poirier, Audrey Lavenu, Valérie Bertaud, Boris Campillo-Gimenez, Emmanuel Chazard, Marc Cuggia, Guillaume
Bouzillé. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 17.12.2018. This is an
open-access article distributed under the terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work, first published in JMIR Public Health and Surveillance, is properly cited. The complete bibliographic
information, a link to the original publication on http://publichealth.jmir.org, as well as this copyright and license information
must be included.

JMIR Public Health Surveill 2018 | vol. 4 | iss. 4 | e11361 | p.13http://publichealth.jmir.org/2018/4/e11361/
(page number not for citation purposes)

Poirier et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://publichealth.jmir.org/2018/4/e11361/
http://dx.doi.org/10.2196/11361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

