I. Garkavtsev, A. Kazarov, A. Gudkov, and K. Riabowol, Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation, Nat Genet. déc, vol.14, issue.4, pp.415-435, 1996.

Y. Shimada, A. Saito, M. Suzuki, E. Takahashi, and M. Horie, Cloning of a novel gene (ING1L) homologous to ING1, a candidate tumor suppressor, Cytogenet Cell Genet, vol.83, issue.3-4, pp.232-237, 1998.

M. Nagashima, M. Shiseki, K. Miura, K. Hagiwara, S. P. Linke et al., DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53, Proc Natl Acad Sci U S A. 14 août, vol.98, issue.17, pp.9671-9677, 2001.

M. Shiseki, M. Nagashima, R. M. Pedeux, M. Kitahama-shiseki, K. Miura et al., p29ING4 and p28ING5 bind to p53 and p300, and enhance p53 activity, Cancer Res. 15 mai, vol.63, issue.10, pp.2373-2381, 2003.

X. Shi, T. Hong, K. L. Walter, M. Ewalt, E. Michishita et al., ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression, Nature. 6 juill, vol.442, issue.7098, pp.96-105, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02154247

G. He, C. C. Helbing, M. J. Wagner, C. W. Sensen, and K. Riabowol, Phylogenetic analysis of the ING family of PHD finger proteins, Mol Biol Evol. janv, vol.22, issue.1, pp.104-120, 2005.

W. Y. Lee, D. Lee, W. Chung, and C. S. Kwon, Arabidopsis ING and Alfin1-like protein families localize to the nucleus and bind to H3K4me3/2 via plant homeodomain fingers, Plant J Cell Mol Biol. mai, vol.58, issue.3, pp.511-535, 2009.

E. I. Campos, M. Y. Chin, W. H. Kuo, and G. Li, Biological functions of the ING family tumor suppressors, Cell Mol Life Sci CMLS, vol.61, pp.2597-613, 2004.

C. Ah and J. Sn, The ING Gene Family in the Regulation of Cell Growth and Tumorigenesis, J Cell Physiol. janv, vol.218, issue.1, pp.45-57, 2009.

Y. Doyon, C. Cayrou, M. Ullah, A. Landry, V. Côté et al., ING tumor suppressor proteins are critical regulators of chromatin acetylation required for genome expression and perpetuation, Mol Cell. 6 janv, vol.21, issue.1, pp.51-64, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02154286

M. Russell, P. Berardi, W. Gong, K. Riabowol, -. Grow et al., ING proteins link cancer, senescence and apoptosis, Exp Cell Res. 15 avr, vol.312, issue.7, pp.951-61, 2006.

I. Garkavtsev, I. A. Grigorian, V. S. Ossovskaya, M. V. Chernov, P. M. Chumakov et al., The candidate tumour suppressor p33ING1 cooperates with p53 in cell growth control, Nature. 15 janv, vol.391, issue.6664, pp.295-303, 1998.

A. H. Coles, H. Liang, Z. Zhu, C. Marfella, J. Kang et al., Deletion of p37Ing1 in mice reveals a p53-independent role for Ing1 in the suppression of cell proliferation, apoptosis, and tumorigenesis, Cancer Res. 1 mars, vol.67, issue.5, pp.2054-61, 2007.

M. Saito, K. Kumamoto, A. I. Robles, I. Horikawa, B. Furusato et al., Targeted disruption of Ing2 results in defective spermatogenesis and development of soft-tissue sarcomas, PloS One, vol.5, issue.11, p.15541, 2010.

M. A. Soliman and K. Riabowol, After a decade of study-ING, a PHD for a versatile family of proteins, Trends Biochem Sci, vol.32, issue.11, pp.509-528, 2007.

N. Li, G. Zhao, T. Chen, L. Xue, L. Ma et al., Nucleolar protein CSIG is required for p33ING1 function in UV-induced apoptosis, Cell Death Dis. 15 mars, vol.3, p.283, 2012.

Y. Wang and G. Li, ING3 promotes UV-induced apoptosis via Fas/caspase-8 pathway in melanoma cells, J Biol Chem. 28 avr, vol.281, issue.17, pp.11887-93, 2006.

W. Chen, Y. Yang, Z. Zhang, A. Q. Li, N. Liu et al., MiR-1307 promotes ovarian cancer cell chemoresistance by targeting the ING5 expression, J Ovarian Res. 11 janv, vol.10, issue.1, p.1, 2017.
DOI : 10.1186/s13048-016-0301-4

URL : https://ovarianresearch.biomedcentral.com/track/pdf/10.1186/s13048-016-0301-4

D. He, H. Miao, Y. Xu, L. Xiong, Y. Wang et al., MiR-371-5p facilitates pancreatic cancer cell proliferation and decreases patient survival, PloS One, vol.9, issue.11, p.112930, 2014.
DOI : 10.1371/journal.pone.0112930

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0112930&type=printable

R. C. Lee, R. L. Feinbaum, and A. V. , The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell. 3 déc, vol.75, issue.5, pp.843-54, 1993.
URL : https://hal.archives-ouvertes.fr/in2p3-00597159

J. C. Peng, J. Shen, and Z. H. Ran, Transcribed ultraconserved region in human cancers, RNA Biol. déc, vol.10, issue.12, pp.1771-1778, 2013.
DOI : 10.4161/rna.26995

URL : https://www.tandfonline.com/doi/pdf/10.4161/rna.26995?needAccess=true

F. Kopp and J. T. Mendell, Functional Classification and Experimental Dissection of Long Noncoding RNAs, Cell. 25 janv, vol.172, issue.3, pp.393-407, 2018.

D. P. Bartel, MicroRNAs: genomics, biogenesis, mechanism, and function, Cell. 23 janv, vol.116, issue.2, pp.281-97, 2004.

N. M. Ghahhari and S. Babashah, Interplay between microRNAs and WNT/?-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer, Eur J Cancer Oxf Engl, vol.51, issue.12, pp.1638-1687, 1990.
DOI : 10.1016/j.ejca.2015.04.021

Y. Wang, J. Liu, C. Liu, A. Naji, and D. A. Stoffers, MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic ?-cells, Diabetes. mars, vol.62, issue.3, pp.887-95, 2013.

J. Chen, B. Zhao, J. Zhao, and S. Li, Potential Roles of Exosomal MicroRNAs as Diagnostic Biomarkers and Therapeutic Application in Alzheimer's Disease, Neural Plast, p.7027380, 2017.

C. X. Yu and S. Sun, An Emerging Role for Circular RNAs in Osteoarthritis, Yonsei Med J. mai, vol.59, issue.3, pp.349-55, 2018.

V. Kadamkode and G. Banerjee, Micro RNA: an epigenetic regulator of type 2 diabetes. MicroRNA Shariqah United Arab Emir, vol.3, pp.86-97, 2014.

Y. Peng and C. M. Croce, The role of MicroRNAs in human cancer, Signal Transduct Target Ther. 28 janv, vol.1, p.15004, 2016.

A. A. Svoronos, D. M. Engelman, and F. J. Slack, OncomiR or Tumor Suppressor? The Duplicity of MicroRNAs in Cancer, Cancer Res, vol.01, issue.13, pp.3666-70, 2016.

L. He, J. M. Thomson, M. T. Hemann, E. Hernando-monge, D. Mu et al., A microRNA polycistron as a potential human oncogene, Nature. 9 juin, vol.435, issue.7043, pp.828-861, 2005.
DOI : 10.1038/nature03552

URL : http://europepmc.org/articles/pmc4599349?pdf=render

R. Gruszka and M. Zakrzewska, The Oncogenic Relevance of miR-17-92 Cluster and Its Paralogous miR106b-25 and miR-106a-363 Clusters in Brain Tumors, Int J Mol Sci. 16 mars, vol.19, issue.3, 2018.

Y. Hayashita, H. Osada, Y. Tatematsu, H. Yamada, K. Yanagisawa et al., A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation, Cancer Res, vol.65, issue.21, pp.9628-9660, 2005.

M. Gunduz, H. Nagatsuka, K. Demircan, E. Gunduz, B. Cengiz et al., Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas, Gene. 15 août, vol.356, pp.109-126, 2005.

K. Stegmaier, S. Pendse, G. F. Barker, P. Bray-ward, D. C. Ward et al., Frequent loss of heterozygosity at the TEL gene locus in acute lymphoblastic leukemia of childhood, Blood. 1 juill, vol.86, issue.1, pp.38-44, 1995.

P. L. Berger, S. B. Frank, V. V. Schulz, E. A. Nollet, M. J. Edick et al., Transient induction of ING4 by Myc drives prostate epithelial cell differentiation and its disruption drives prostate tumorigenesis, Cancer Res. 15 juin, vol.74, issue.12, pp.3357-68, 2014.

M. Li, J. Y. Sun, W. Yu, Y. Bai, J. Tong et al., Reduced expression and novel splice variants of ING4 in human gastric adenocarcinoma, J Pathol. sept, vol.219, issue.1, pp.87-95, 2009.

X. Li, K. Kikuchi, Y. Zheng, A. Noguchi, H. Takahashi et al., Downregulation and translocation of nuclear ING4 is correlated with tumorigenesis and progression of head and neck squamous cell carcinoma, Oral Oncol. mars, vol.47, issue.3, pp.217-240, 2011.

B. Cengiz, M. Gunduz, H. Nagatsuka, L. Beder, E. Gunduz et al., Fine deletion mapping of chromosome 2q21-37 shows three preferentially deleted regions in oral cancer, Oral Oncol. mars, vol.43, issue.3, pp.241-248, 2007.

G. S. Nouman, J. J. Anderson, J. Lunec, and B. Angus, The role of the tumour suppressor p33 ING1b in human neoplasia, J Clin Pathol. juill, vol.56, issue.7, pp.491-497, 2003.

X. Ding, S. Zhao, L. Yang, X. Zhao, G. Zhao et al., The nucleocytoplasmic translocation and up-regulation of ING5 protein in breast cancer: a potential target for gene therapy, Oncotarget, vol.8, issue.47, pp.81953-66, 2017.

S. Satpathy, C. Guérillon, T. Kim, N. Bigot, S. Thakur et al., SUMOylation of the ING1b tumor suppressor regulates gene transcription, Carcinogenesis. oct, vol.35, issue.10, pp.2214-2237, 2014.

M. Garate, E. I. Campos, J. A. Bush, H. Xiao, and G. Li, Phosphorylation of the tumor suppressor p33(ING1b) at Ser-126 influences its protein stability and proliferation of melanoma cells, FASEB J Off Publ Fed Am Soc Exp Biol, vol.21, issue.13, pp.3705-3721, 2007.

L. Yu, S. Thakur, R. Y. Leong-quong, K. Suzuki, A. Pang et al., Src Regulates the Activity of the ING1 Tumor Suppressor, PLOS ONE. avr, vol.8, issue.4, p.60943, 2013.

K. Kumamoto, E. A. Spillare, K. Fujita, I. Horikawa, T. Yamashita et al., Nutlin-3a activates p53 to both down-regulate inhibitor of growth 2 and up-regulate mir-34a, mir-34b, and mir-34c expression, and induce senescence, Cancer Res. 1 mai, vol.68, issue.9, pp.3193-203, 2008.

R. Pedeux, S. Sengupta, J. C. Shen, O. N. Demidov, S. Saito et al., ING2 regulates the onset of replicative senescence by induction of p300-dependent p53 acetylation, Mol Cell Biol. août, vol.25, issue.15, pp.6639-6687, 2005.

J. Nie, L. Liu, M. Wu, G. Xing, S. He et al., HECT ubiquitin ligase Smurf1 targets the tumor suppressor ING2 for ubiquitination and degradation, FEBS Lett. 16 juill, vol.584, issue.14, pp.3005-3017, 2010.

H. Li, N. Xiao, Y. Wang, R. Wang, Y. Chen et al., Smurf1 regulates lung cancer cell growth and migration through interaction with and ubiquitination of PIPKI?, Oncogene, vol.12, issue.41, pp.5668-80, 2017.

Y. Tao, C. Sun, T. Zhang, and Y. Song, SMURF1 promotes the proliferation, migration and invasion of gastric cancer cells, Oncol Rep. sept, vol.38, issue.3, pp.1806-1820, 2017.

R. Wei, J. Guo, M. Li, X. Yang, R. Zhu et al., Smurf1 controls S phase progression and tumorigenesis through Wee1 degradation, FEBS Lett, vol.591, issue.8, pp.1150-1158, 2017.
DOI : 10.1002/1873-3468.12624

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1002/1873-3468.12624

G. Chen, Y. Wang, M. Garate, J. Zhou, and G. Li, The tumor suppressor ING3 is degraded by SCF(Skp2)mediated ubiquitin-proteasome system, Oncogene. 11 mars, vol.29, issue.10, pp.1498-508, 2010.

Q. Li, M. Murphy, J. Ross, C. Sheehan, and J. A. Carlson, Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship, J Cutan Pathol, vol.31, issue.10, pp.633-675, 2004.

C. Woenckhaus, S. Maile, S. Uffmann, M. Bansemir, T. Dittberner et al., Expression of Skp2 and p27KIP1 in naevi and malignant melanoma of the skin and its relation to clinical outcome, Histol Histopathol, vol.20, issue.2, pp.501-509, 2005.

Q. Guo and W. Fast, Citrullination of Inhibitor of Growth 4 (ING4) by Peptidylarginine Deminase 4 (PAD4) Disrupts the Interaction between ING4 and p53, J Biol Chem. 13 mai, vol.286, pp.17069-78, 2011.

K. Tsai, H. Tseng, and W. Lin, Two wobble-splicing events affect ING4 protein subnuclear localization and degradation, Exp Cell Res, vol.314, issue.17, pp.3130-3171, 2008.

U. Linzen, R. Lilischkis, R. Pandithage, B. Schilling, A. Ullius et al., ING5 is phosphorylated by CDK2 and controls cell proliferation independently of p53, PloS One, vol.10, issue.4, p.123736, 2015.

D. Skowyra, M. Zeremski, N. Neznanov, M. Li, Y. Choi et al., Differential association of products of alternative transcripts of the candidate tumor suppressor ING1 with the mSin3/HDAC1 transcriptional corepressor complex, J Biol Chem. 23 mars, vol.276, issue.12, pp.8734-8743, 2001.

J. M. Ceruti, M. F. Ogara, C. Menéndez, I. Palmero, and E. T. Cánepa, Inhibitor of growth 1 (ING1) acts at early steps of multiple DNA repair pathways, Mol Cell Biochem. juin, vol.378, issue.1-2, pp.117-143, 2013.

N. Bigot, C. Guérillon, S. Loisel, N. Bertheuil, L. Sensebé et al., ING1b negatively regulates HIF1? protein levels in adipose-derived stromal cells by a SUMOylation-dependent mechanism, Cell Death Dis. 22 janv, vol.6, p.1612, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01109566

C. Guérillon, D. Larrieu, and R. Pedeux, ING1 and ING2: multifaceted tumor suppressor genes, Cell Mol Life Sci CMLS, vol.70, issue.20, pp.3753-72, 2013.

J. Li, Y. Wang, R. Wong, and G. Li, The role of ING tumor suppressors in UV stress response and melanoma progression, Curr Drug Targets. mai, vol.10, issue.5, pp.455-64, 2009.

J. Chen, U. M. Tran, U. Rajarajacholan, S. Thalappilly, and K. Riabowol, ING1b-inducible microRNA203 inhibits cell proliferation, Br J Cancer. 19 mars, vol.108, issue.5, pp.1143-1151, 2013.
DOI : 10.1038/bjc.2013.50

URL : https://www.nature.com/articles/bjc201350.pdf

T. Chen, C. Xu, J. Chen, C. Ding, Z. Xu et al., MicroRNA-203 inhibits cellular proliferation and invasion by targeting Bmi1 in non-small cell lung cancer, Oncol Lett. juin, vol.9, issue.6, pp.2639-2685, 2015.

G. Zhao, Y. Guo, Z. Chen, Y. Wang, C. Yang et al., miR-203 Functions as a Tumor Suppressor by Inhibiting Epithelial to Mesenchymal Transition in Ovarian Cancer, J Cancer Sci Ther, vol.7, issue.2, pp.34-43, 2015.

J. Xiang, C. Bian, H. Wang, S. Huang, and D. Wu, MiR-203 down-regulates Rap1A and suppresses cell proliferation, adhesion and invasion in prostate cancer, J Exp Clin Cancer Res CR. 31 janv, vol.34, p.8, 2015.

D. Gómez-cabello, S. Callejas, A. Benguría, A. Moreno, J. Alonso et al., Regulation of the microRNA processor DGCR8 by the tumor suppressor ING1, Cancer Res. 1 mars, vol.70, issue.5, pp.1866-74, 2010.

J. Liu, Y. Lin, H. Yang, Q. Deng, G. Chen et al., The expression of p33(ING1), p53, and autophagyrelated gene Beclin1 in patients with non-small cell lung cancer, Tumour Biol J Int Soc Oncodevelopmental Biol Med. déc, vol.32, issue.6, pp.1113-1134, 2011.

F. C. Tsang, L. S. Po, K. M. Leung, A. Lau, W. Y. Siu et al., ING1b decreases cell proliferation through p53-dependent and-independent mechanisms, FEBS Lett, vol.553, issue.3, pp.277-85, 2003.
DOI : 10.1016/s0014-5793(03)01024-x

URL : https://febs.onlinelibrary.wiley.com/doi/pdf/10.1016/S0014-5793%2803%2901024-X

U. M. Tran, U. Rajarajacholan, J. Soh, T. -. Kim, S. Thalappilly et al., LincRNA-p21 acts as a mediator of ING1b-induced apoptosis, Cell Death Dis. 5 mars, vol.6, p.1668, 2015.

Y. Gao, H. Ma, C. Gao, Y. Lv, X. Chen et al., Tumor-promoting properties of miR-8084 in breast cancer through enhancing proliferation, suppressing apoptosis and inducing epithelialmesenchymal transition, J Transl Med. 23 févr, vol.16, issue.1, p.38, 2018.

A. Shimomura, S. Shiino, J. Kawauchi, S. Takizawa, H. Sakamoto et al., Novel combination of serum microRNA for detecting breast cancer in the early stage, Cancer Sci. mars, vol.107, issue.3, pp.326-360, 2016.

M. Nagashima, M. Shiseki, R. M. Pedeux, S. Okamura, M. Kitahama-shiseki et al., A novel PHD-finger motif protein, p47ING3, modulates p53-mediated transcription, cell cycle control, and apoptosis, Oncogene. 23 janv, vol.22, issue.3, pp.343-50, 2003.
DOI : 10.1038/sj.onc.1206115

URL : https://www.nature.com/articles/1206115.pdf

S. Zhao, L. Wang, C. Zhang, Y. Deng, B. Zhao et al., Inhibitor of growth 3 induces cell death by regulating cell proliferation, apoptosis and cell cycle arrest by blocking the PI3K/AKT pathway, Cancer Gene Ther. 1 juin, 2018.

M. Lu, F. Chen, Q. Wang, K. Wang, Q. Pan et al., Downregulation of inhibitor of growth 3 is correlated with tumorigenesis and progression of hepatocellular carcinoma, Oncol Lett. juill, vol.4, issue.1, pp.47-52, 2012.

H. Yang, H. Liu, L. Tian, R. Song, X. Song et al., Expression and prognostic value of ING3 in human primary hepatocellular carcinoma, Exp Biol Med Maywood NJ. avr, vol.237, issue.4, pp.352-61, 2012.

W. Gou, H. Sun, S. Zhao, Z. Niu, X. Mao et al., Downregulated inhibitor of growth 3 (ING3) expression during colorectal carcinogenesis, Indian J Med Res. avr, vol.139, issue.4, pp.561-568, 2014.

M. Gunduz, L. B. Beder, E. Gunduz, H. Nagatsuka, K. Fukushima et al., Downregulation of ING3 mRNA expression predicts poor prognosis in head and neck cancer, Cancer Sci. mars, vol.99, issue.3, pp.531-539, 2008.

Y. Wang, D. L. Dai, M. Martinka, and G. Li, Prognostic significance of nuclear ING3 expression in human cutaneous melanoma, Clin Cancer Res Off J Am Assoc Cancer Res. 15 juill, vol.13, issue.14, pp.4111-4117, 2007.

A. Almami, S. A. Hegazy, A. Nabbi, M. Alshalalfa, A. Salman et al., ING3 is associated with increased cell invasion and lethal outcome in ERG-negative prostate cancer patients, Tumour Biol J Int Soc Oncodevelopmental Biol Med. juill, vol.37, issue.7, pp.9731-9739, 2016.

U. L. Mcclurg, A. Nabbi, C. Ricordel, S. Korolchuk, S. Mccracken et al., Human ex vivo prostate tissue model system identifies ING3 as an oncoprotein, Br J Cancer. 6 mars, vol.118, issue.5, pp.713-739, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01744404

A. Nabbi, U. L. Mcclurg, S. Thalappilly, A. Almami, M. Mobahat et al., ING3 promotes prostate cancer growth by activating the androgen receptor, BMC Med, vol.16, issue.1, p.103, 2017.

Z. Zhang, C. Fu, Q. Xu, and X. Wei, Long non-coding RNA CASC7 inhibits the proliferation and migration of colon cancer cells via inhibiting microRNA-21, Biomed Pharmacother Biomedecine Pharmacother, vol.95, pp.1644-53, 2017.

X. Pan, Z. Wang, and R. Wang, MicroRNA-21: a novel therapeutic target in human cancer, Cancer Biol Ther. 15 déc, vol.10, issue.12, pp.1224-1256, 2010.

J. Yan, T. Liu, X. Zhou, Y. Dang, C. Yin et al., FZD6, targeted by miR-21, represses gastric cancer cell proliferation and migration via activating non-canonical wnt pathway, Am J Transl Res. 15 mai, vol.8, issue.5, pp.2354-64, 2016.

B. Yan-nan, Y. Zhao-yan, L. Li-xi, Y. Jiang, X. Qing-jie et al., MicroRNA-21 accelerates hepatocyte proliferation in vitro via PI3K/Akt signaling by targeting PTEN, Biochem Biophys Res Commun. 17 janv, vol.443, issue.3, pp.802-809, 2014.

B. Zhang, T. Lin, and H. He, Comparative analysis of blood and saliva expression profiles in chronic and refractory periodontitis patients, BMC Oral Health. 24 déc, vol.15, p.166, 2015.

X. Zhang, K. Wang, Z. Wang, L. Xu, Q. Wang et al., Nuclear localization signal of ING4 plays a key role in its binding to p53, Biochem Biophys Res Commun. 17 juin, vol.331, issue.4, pp.1032-1040, 2005.

N. Avvakumov, M. Lalonde, N. Saksouk, E. Paquet, K. C. Glass et al., Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation, Mol Cell Biol. févr, vol.32, issue.3, pp.689-703, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02154207

M. Lalonde, N. Avvakumov, K. C. Glass, F. Joncas, N. Saksouk et al., Exchange of associated factors directs a switch in HBO1 acetyltransferase histone tail specificity, Genes Dev. 15 sept, vol.27, issue.18, pp.2009-2033, 2013.

D. Larrieu and R. Pedeux, SharING out the roles in replicatING DNA, Cell Cycle Georget Tex, vol.15, issue.22, pp.3623-3627, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00869422

J. Shen, M. Unoki, D. Ythier, A. Duperray, L. Varticovski et al., Inhibitor of growth 4 suppresses cell spreading and cell migration by interacting with a novel binding partner, liprin alpha1, Cancer Res. 15 mars, vol.67, issue.6, pp.2552-2560, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00144498

S. Kim, K. Chin, J. W. Gray, and J. M. Bishop, A screen for genes that suppress loss of contact inhibition: identification of ING4 as a candidate tumor suppressor gene in human cancer, Proc Natl Acad Sci, vol.101, issue.46, pp.16251-16257, 2004.

Y. Chen, Y. Huang, P. Hou, Z. Zhang, Y. Zhang et al., ING4 suppresses tumor angiogenesis and functions as a prognostic marker in human colorectal cancer, Oncotarget, vol.29, issue.48, pp.79017-79048, 2016.

M. Mraz, D. Dolezalova, K. Plevova, S. Kozubik, K. Mayerova et al., MicroRNA-650 expression is influenced by immunoglobulin gene rearrangement and affects the biology of chronic lymphocytic leukemia, Blood. 1 mars, vol.119, issue.9, pp.2110-2113, 2012.

J. H. Yun, S. Moon, H. Lee, M. Y. Hwang, Y. Kim et al., MicroRNA-650 in a copy numbervariable region regulates the production of interleukin 6 in human osteosarcoma cells, Oncol Lett. oct, vol.10, issue.4, pp.2603-2612, 2015.

Z. Zeng, F. Li, F. Gao, D. Sun, and L. Yao, Upregulation of miR-650 is correlated with downregulation of ING4 and progression of hepatocellular carcinoma, J Surg Oncol. févr, vol.107, issue.2, pp.105-115, 2013.

X. Zhang, W. Zhu, J. Zhang, S. Huo, L. Zhou et al., MicroRNA-650 targets ING4 to promote gastric cancer tumorigenicity, Biochem Biophys Res Commun. 30 avr, vol.395, issue.2, pp.275-80, 2010.

J. Huang, S. Cui, Y. Chen, H. Song, G. Huang et al., MicroRNA-650 was a prognostic factor in human lung adenocarcinoma and confers the docetaxel chemoresistance of lung adenocarcinoma cells via regulating Bcl-2/Bax expression, PloS One, vol.8, issue.8, p.72615, 2013.

M. Lango-chavarría, G. K. Chimal-ramírez, M. E. Ruiz-tachiquín, N. A. Espinoza-sánchez, M. C. Suárezarriaga et al., A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients, Int J Oncol. févr, vol.50, issue.2, pp.432-472, 2017.

P. R. Kuninty, L. Bojmar, V. Tjomsland, M. Larsson, G. Storm et al., MicroRNA-199a and-214 as potential therapeutic targets in pancreatic stellate cells in pancreatic tumor, Oncotarget. 24 févr, vol.7, issue.13, pp.16396-408, 2016.

X. J. Zhang, H. Ye, C. W. Zeng, B. He, H. Zhang et al., Dysregulation of miR-15a and miR-214 in human pancreatic cancer, J Hematol OncolJ Hematol Oncol, vol.24, p.46, 2010.

A. Yan, C. Yang, Z. Chen, C. Li, and L. Cai, MiR-761 Promotes Progression and Metastasis of Non-Small Cell Lung Cancer by Targeting ING4 and TIMP2, Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol, vol.37, issue.1, pp.55-66, 2015.

X. Hu, Y. Feng, L. Sun, L. Qu, and C. Sun, Roles of microRNA-330 and Its Target Gene ING4 in the Development of Aggressive Phenotype in Hepatocellular Carcinoma Cells, Dig Dis Sci, vol.62, issue.3, pp.715-737, 2017.

S. Li, A. Zeng, Q. Hu, W. Yan, Y. Liu et al., miR-423-5p contributes to a malignant phenotype and temozolomide chemoresistance in glioblastomas, Neuro-Oncol, vol.19, issue.1, pp.55-65, 2017.

K. Park, J. Teoh, Y. Wang, Z. Broskova, A. S. Bayoumi et al., Carvedilol-responsive microRNAs, miR-199a-3p and-214 protect cardiomyocytes from simulated ischemia-reperfusion injury, Am J Physiol Heart Circ Physiol. 1 août, vol.311, issue.2, pp.371-383, 2016.

C. Lin, J. S. Kaptein, and J. Sheikh, Differential expression of microRNAs and their possible roles in patients with chronic idiopathic urticaria and active hives, Allergy Rhinol Provid RI. 1 juin, vol.8, issue.2, pp.67-80, 2017.

S. M. Jafarnejad and G. Li, Regulation of p53 by ING family members in suppression of tumor initiation and progression, Cancer Metastasis Rev. juin, vol.31, issue.1-2, pp.55-73, 2012.

N. Avvakumov, M. Lalonde, N. Saksouk, E. Paquet, K. C. Glass et al., Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation, Mol Cell Biol. févr, vol.32, issue.3, pp.689-703, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02154207

Y. Li, H. Deng, L. Lv, C. Zhang, L. Qian et al., The miR-193a-3p-regulated ING5 gene activates the DNA damage response pathway and inhibits multi-chemoresistance in bladder cancer, Oncotarget. 30 avr, vol.6, issue.12, pp.10195-206, 2015.

W. Gou, D. Shen, X. Yang, S. Zhao, Y. Liu et al., ING5 suppresses proliferation, apoptosis, migration and invasion, and induces autophagy and differentiation of gastric cancer cells: a good marker for carcinogenesis and subsequent progression, Oncotarget. 14 août, vol.6, issue.23, pp.19552-79, 2015.

M. Liu, Y. Du, J. Gao, J. Liu, X. Kong et al., Aberrant expression miR-196a is associated with abnormal apoptosis, invasion, and proliferation of pancreatic cancer cells, Pancreas. oct, vol.42, issue.7, pp.1169-81, 2013.

S. Cui, X. Liao, C. Ye, X. Yin, M. Liu et al., ING5 suppresses breast cancer progression and is regulated by miR-24, Mol Cancer, vol.10, issue.1, p.89, 2017.

P. Ye, X. Ke, X. Zang, H. Sun, Z. Dong et al., Up-regulated MiR-27-3p promotes the G1-S phase transition by targeting inhibitor of growth family member 5 in osteosarcoma, Biomed Pharmacother Biomedecine Pharmacother. mai, vol.101, pp.219-246, 2018.

Y. Cao, J. Chen, D. Wang, H. Peng, X. Tan et al., Upregulated in Hepatitis B virusassociated hepatocellular carcinoma cells, miR-331-3p promotes proliferation of hepatocellular carcinoma cells by targeting ING5, Oncotarget, vol.6, issue.35, pp.38093-106, 2015.

X. Xie, X. Xu, C. Sun, and Z. Yu, Hepatitis B virus X protein promotes proliferation of hepatocellular carcinoma cells by upregulating miR-181b by targeting ING5, Biol Chem. 24 mai, vol.399, issue.6, pp.611-620, 2018.

J. Wang, W. Huang, Y. Wu, J. Hou, Y. Nie et al., MicroRNA-193 pro-proliferation effects for bone mesenchymal stem cells after low-level laser irradiation treatment through inhibitor of growth family, member 5, Stem Cells Dev. 1 sept, vol.21, issue.13, pp.2508-2527, 2012.

S. S. Borkosky, M. Gunduz, H. Nagatsuka, L. B. Beder, E. Gunduz et al., Frequent deletion of ING2 locus at 4q35.1 associates with advanced tumor stage in head and neck squamous cell carcinoma, J Cancer Res Clin Oncol. mai, vol.135, issue.5, pp.703-716, 2009.

S. Thakur, A. Nabbi, A. Klimowicz, and K. Riabowol, Stromal ING1 expression induces a secretory phenotype and correlates with breast cancer patient survival, Mol Cancer. 27 août, vol.14, p.164, 2015.

A. H. Coles, H. Gannon, A. Cerny, K. , E. Jones et al., Inhibitor of growth-4 promotes I?B promoter activation to suppress NF-?B signaling and innate immunity, Proc Natl Acad Sci. 22 juin, vol.107, issue.25, pp.11423-11431, 2010.

R. Sager, Expression genetics in cancer: shifting the focus from DNA to RNA, Proc Natl Acad Sci, vol.94, issue.3, pp.952-957, 1997.

D. C. Ellwanger, F. A. Büttner, H. Mewes, and V. Stümpflen, The sufficient minimal set of miRNA seed types, Bioinforma Oxf Engl. 15 mai, vol.27, issue.10, pp.1346-50, 2011.

J. Hausser, A. P. Syed, B. Bilen, and M. Zavolan, Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation, Genome Res. avr, vol.23, issue.4, pp.604-619, 2013.

N. Hosseinahli, M. Aghapour, P. Duijf, and B. Baradaran, Treating cancer with microRNA replacement therapy: A literature review, J Cell Physiol. août, vol.233, issue.8, pp.5574-88, 2018.

Y. Zhao, Z. Li, W. Sheng, J. Miao, and J. Yang, Radiosensitivity by ING4-IL-24 bicistronic adenovirusmediated gene cotransfer on human breast cancer cells, Cancer Gene Ther. janv, vol.20, issue.1, pp.38-45, 2013.

Y. Zhao, C. Su, H. Zhai, Y. Tian, W. Sheng et al., Synergistic antitumor effect of adenovirus-mediated hING4 gene therapy and (125)I radiation therapy on pancreatic cancer, Cancer Lett. 28 mars, vol.316, issue.2, pp.211-219, 2012.

H. Shimada, T. Liu, T. Ochiai, T. Shimizu, Y. Haupt et al., Facilitation of adenoviral wild-type p53-induced apoptotic cell death by overexpression of p33(ING1) in T.Tn human esophageal carcinoma cells, Oncogene. 14 févr, vol.21, issue.8, pp.1208-1224, 2002.

Y. Meng, S. Wang, C. Li, M. Qian, X. Yan et al., Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres, Biomaterials. 1 sept, vol.100, pp.134-176, 2016.