SINCOHMAP LAND-COVER AND VEGETATION MAPPING USING MULTI-TEMPORAL SENTINEL-1 INTERFEROMETRIC COHERENCE

Abstract : InSAR coherence is a promising parameter for land-cover classification and mapping. The ESA SEOM SInCohMap project is devised to test and analyze multi-temporal InSAR coherence potentialities exploiting dense multitemporal data from the Sentinel1 constellation. In the framework of the project, this paper shows the first classification results using machine learning algorithms over a two-year period of InSAR coherence data. The evaluation is performed on the test site of Donana (Seville, Southwestern Spain), mainly an agricultural area where different land covers can be identified. Classification results exploiting InSAR coherence shows accuracies around 80 % for this site.
Document type :
Conference papers
Complete list of metadatas

https://hal-univ-rennes1.archives-ouvertes.fr/hal-02018923
Contributor : Laurent Jonchère <>
Submitted on : Thursday, February 14, 2019 - 11:26:10 AM
Last modification on : Thursday, June 20, 2019 - 3:25:13 PM

Identifiers

Citation

F. Vicente-Guijalba, A. Jacob, J. M. Lopez-Sanchez, C. Lopez-Martinez, J. Duro, et al.. SINCOHMAP LAND-COVER AND VEGETATION MAPPING USING MULTI-TEMPORAL SENTINEL-1 INTERFEROMETRIC COHERENCE. 38th IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Jul 2018, Valencia, Spain. ⟨10.1109/igarss.2018.8517926⟩. ⟨hal-02018923⟩

Share

Metrics

Record views

47