M. Allen, What Makes a Fly Enter Diapause?, Fly (Austin), vol.1, pp.307-310, 2007.

J. L. Andersen, H. A. Macmillan, and J. Overgaard, Muscle membrane potential and insect chill coma, J. Exp. Biol, vol.218, pp.2492-2495, 2015.

M. K. Andersen, R. Folkersen, H. A. Macmillan, and J. Overgaard, Cold acclimation improves chill tolerance in the migratory locust through preservation of ion balance and membrane potential, J. Exp. Biol, vol.220, pp.487-496, 2017.

M. S. Ascunce, C. Yang, J. Oakey, L. Calcaterra, W. Wu et al., Global Invasion History of the Fire Ant Solenopsis invicta, Science, vol.331, pp.1066-1068, 2011.

J. S. Bayley, C. B. Winther, M. K. Andersen, C. Grønkjaer, O. B. Nielsen et al., Cold exposure causes cell death by depolarization-mediated Ca2+ overload in a chill-susceptible insect, Proc. Natl. Acad. Sci, vol.115, pp.9737-9744, 2018.

L. Boardman, J. G. Sørensen, and J. S. Terblanche, Physiological responses to fluctuating thermal and hydration regimes in the chill susceptible insect, Thaumatotibia leucotreta, J. Insect Physiol, vol.59, pp.781-794, 2013.

M. P. Bolda, R. E. Goodhue, and F. G. Zalom, Spotted Wing Drosophila: Potential Economic Impact of a Newly Established Pest, Univ. Calif. Giannini Found. Agric. Econ, vol.13, p.4, 2010.

C. D. Bortner, M. Gomez-angelats, and J. A. Cidlowski, Plasma membrane depolarization without repolarization is an early molecular event in anti-Fas-induced apoptosis, J. Biol. Chem, vol.276, pp.4304-4314, 2001.

A. Cini, C. Ioriatti, and G. Anfora, A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management, Bull. INSECTOLOGY, vol.65, pp.149-160, 2012.

H. Colinet and T. Hance, Male Reproductive Potential of Aphidius colemani (Hymenoptera: Aphidiinae) Exposed to Constant or Fluctuating Thermal Regimens, Environ. Entomol, vol.38, pp.242-249, 2009.

H. Colinet and A. A. Hoffmann, Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster, Funct. Ecol, vol.26, pp.84-93, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00780191

H. Colinet, D. Renault, M. Javal, P. Berková, P. ?imek et al., Uncovering the benefits of fluctuating thermal regimes on cold tolerance of drosophila flies by combined metabolomic and lipidomic approach, Biochim. Biophys. Acta BBA -Mol. Cell Biol. Lipids, vol.1861, pp.1736-1745, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01371831

H. Colinet, J. P. Rinehart, G. D. Yocum, and K. J. Greenlee, Mechanisms underpinning the beneficial effects of fluctuating thermal regimes in insect cold tolerance, J. Exp. Biol, vol.221, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01861278

H. Colinet, B. J. Sinclair, P. Vernon, and D. Renault, Insects in Fluctuating Thermal Environments, Annu. Rev. Entomol, vol.60, pp.123-140, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01090471

J. W. Curtsinger, Late-life fecundity plateaus in Drosophila melanogaster can be explained by variation in reproductive life spans, Exp. Gerontol, vol.48, pp.1338-1342, 2013.

D. T. Dalton, V. M. Walton, P. W. Shearer, D. B. Walsh, J. Caprile et al., Laboratory survival of Drosophila suzukii under simulated winter conditions of the Pacific Northwest and seasonal field trapping in five primary regions of small and stone fruit production in the United States, Pest Manag. Sci, vol.67, pp.1368-1374, 2011.

J. David, Y. Cohet, and P. Fouillet, The variability between individuals as a measure of senescence: A study of the number of eggs laid and the percentage of hatched eggs in the case of Drosophila melanogaster, Exp. Gerontol, vol.10, issue.75, p.90011, 1975.

D. L. Denlinger and R. E. Lee, Low Temperature Biology of Insects, 2010.

N. Desneux, E. Wajnberg, K. A. Wyckhuys, G. Burgio, S. Arpaia et al., Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control, J. Pest Sci, vol.83, pp.197-215, 2010.

T. Enriquez and H. Colinet, Basal tolerance to heat and cold exposure of the spotted wing drosophila, Drosophila suzukii, PeerJ, vol.5, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01507693

T. Enriquez, D. Ruel, M. Charrier, and H. Colinet, Effects of fluctuating thermal regimes on cold survival and life history traits of the spotted wing Drosophila (Drosophila suzukii, Matsumara), Insect Sci, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01936818

A. Findsen, T. H. Pedersen, A. G. Petersen, O. B. Nielsen, and J. Overgaard, Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromise muscle function in Locusta migratoria, J. Exp. Biol, vol.217, pp.1297-1306, 2014.

P. Gibert and R. B. Huey, Chill-coma temperature in Drosophila: effects of developmental temperature, latitude, and phylogeny, Physiol. Biochem. Zool. PBZ, vol.74, pp.429-434, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00427200

R. E. Goodhue, M. Bolda, D. Farnsworth, J. C. Williams, and F. G. Zalom, Spotted wing drosophila infestation of California strawberries and raspberries: economic analysis of potential revenue losses and control costs, Pest Manag. Sci, vol.67, pp.1396-1402, 2011.

J. F. Harrison, H. A. Woods, and S. P. Roberts, Ecological and Environmental Physiology of Insects, 2012.

J. R. Hazel, Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation?, Annu. Rev. Physiol, vol.57, pp.19-42, 1995.

J. Hendrichs and A. Robinson, Chapter 243 -Sterile Insect Technique, Encyclopedia of Insects, pp.953-957, 2009.

M. Holmstrup, M. Bayley, and S. A. Pedersen, Interactions between cold, desiccation and environmental toxins, Low Temperature Biology of Insects, pp.166-187, 2010.

Y. Hori, U. Hokkaido, and M. T. Kimura, Relationship between cold stupor and cold tolerance in Drosophila (Diptera: Drosophilidae), Environ. Entomol. USA, 1998.

U. M. Irlich, J. S. Terblanche, T. M. Blackburn, and S. L. Chown, Insect Rate-Temperature Relationships: Environmental Variation and the Metabolic Theory of Ecology, Am. Nat, vol.174, pp.819-835, 2009.

R. Jakobs, T. D. Gariepy, and B. J. Sinclair, Adult plasticity of cold tolerance in a continentaltemperate population of Drosophila suzukii, J. Insect Physiol, vol.79, pp.1-9, 2015.

M. Javal, D. Renault, and H. Colinet, Impact of fluctuating thermal regimes on Drosophila melanogaster survival to cold stress, Anim. Biol, vol.66, pp.427-444, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01475827

T. Kanzawa, Studies on Drosophila suzukii Mats, Stud. Drosoph. Suzukii Mats, 1939.

J. D. Kelty and R. E. Lee, Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophiladae) during ecologically based thermoperiodic cycles, J. Exp. Biol, vol.204, pp.1659-1666, 2001.

M. T. Kimura, Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions, Oecologia, vol.140, pp.442-449, 2004.

V. Ko?tál, J. Korbelová, T. ?t?tina, R. Poupardin, H. Colinet et al., Physiological basis for low-temperature survival and storage of quiescent larvae of the fruit fly Drosophila melanogaster, Sci. Rep, vol.6, p.32346, 2016.

V. Ko?tál, D. Renault, A. Mehrabianová, and J. Bastl, Insect cold tolerance and repair of chillinjury at fluctuating thermal regimes: Role of ion homeostasis, Comp. Biochem. Physiol. A. Mol. Integr. Physiol, vol.147, pp.231-238, 2007.

V. Ko?tál, J. Vambera, and J. Bastl, On the nature of pre-freeze mortality in insects: water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus, J. Exp. Biol, vol.207, pp.1509-1521, 2004.

J. C. Lee, D. J. Bruck, A. J. Dreves, C. Ioriatti, H. Vogt et al., In Focus: Spotted wing drosophila, Drosophila suzukii, across perspectives, Pest Manag. Sci, vol.67, pp.1349-1351, 2011.

Q. Lin, Y. Zhai, A. Zhang, X. Men, X. Zhang et al., Comparative Developmental Times and Laboratory Life Tables for Drosophlia suzukii and Drosophila melanogaster (Diptera: Drosophilidae), Fla. Entomol, vol.97, pp.1434-1442, 2014.

M. D. Luque-de-castro and F. Priego-capote, Soxhlet extraction: Past and present panacea, J. Chromatogr. A, Extraction Techniques, vol.1217, pp.2383-2389, 2010.

H. A. Macmillan, J. L. Andersen, S. A. Davies, and J. Overgaard, The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance, Sci. Rep, vol.5, 2015.

H. A. Macmillan, J. L. Andersen, V. Loeschcke, and J. Overgaard, Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions, Am. J. Physiol. -Regul. Integr. Comp. Physiol, vol.308, pp.823-831, 2015.

H. A. Macmillan, E. Baatrup, and J. Overgaard, Concurrent effects of cold and hyperkalaemia cause insect chilling injury, Proc. Biol. Sci, vol.282, 2015.

H. A. Macmillan and B. N. Hughson, A high-throughput method of hemolymph extraction from adult Drosophila without anesthesia, J. Insect Physiol, vol.63, pp.27-31, 2014.

H. A. Macmillan and B. J. Sinclair, Mechanisms underlying insect chill-coma, J. Insect Physiol, vol.57, pp.12-20, 2011.

H. A. Macmillan, C. M. Williams, J. F. Staples, and B. J. Sinclair, Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.20750-20755, 2012.

K. E. Marshall and B. J. Sinclair, Repeated stress exposure results in a survival-reproduction trade-off in Drosophila melanogaster, Proc. R. Soc. Lond. B Biol. Sci. rspb20091807, 2009.

P. B. Miller, O. T. Obrik-uloho, M. H. Phan, C. L. Medrano, J. S. Renier et al., The song of the old mother: reproductive senescence in female drosophila, Fly (Austin), vol.8, pp.127-139, 2014.

O. Nedved, D. Lavy, and H. A. Verhoef, Modelling the time-temperature relationship in cold injury and effect of high-temperature interruptions on survival in a chill-sensitive collembolan, Funct. Ecol, vol.12, pp.816-824, 1998.

K. Nikolouli, H. Colinet, D. Renault, T. Enriquez, L. Mouton et al., Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii, J. Pest Sci, vol.91, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01737129

J. Overgaard and H. A. Macmillan, The Integrative Physiology of Insect Chill Tolerance, Annu. Rev. Physiol, vol.79, pp.187-208, 2017.

J. Overgaard, J. G. Sørensen, S. O. Petersen, V. Loeschcke, and M. Holmstrup, Changes in membrane lipid composition following rapid cold hardening in Drosophila melanogaster, J. Insect Physiol, vol.51, pp.1173-1182, 2005.

R. Pearl, The Rate Of Living, 1928.

C. Plantamp, K. Salort, P. Gibert, A. Dumet, G. Mialdea et al., All or nothing: Survival, reproduction and oxidative balance in Spotted Wing Drosophila (Drosophila suzukii) in response to cold, J. Insect Physiol, vol.89, pp.28-36, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01301136

L. Rako and A. A. Hoffmann, Complexity of the cold acclimation response in Drosophila melanogaster, J. Insect Physiol, vol.52, pp.94-104, 2006.

C. L. Rauser, Y. Abdel-aal, J. A. Shieh, C. W. Suen, L. D. Mueller et al., Lifelong heterogeneity in fecundity is insufficient to explain late-life fecundity plateaus in Drosophila melanogaster, Exp. Gerontol, vol.40, pp.660-670, 2005.

R. D. Nedved, O. Hervant, F. Vernon, and P. , The importance of fluctuating thermal regimes for repairing chill injuries in the tropical beetle Alphitobius diaperinus (Coleoptera: Tenebrionidae) during exposure to low temperature, Physiol. Entomol, vol.29, pp.139-145, 2004.
URL : https://hal.archives-ouvertes.fr/halsde-00154670

J. P. Rinehart, G. D. Yocum, and D. L. Denlinger, Thermotolerance and rapid cold hardening ameliorate the negative effects of brief exposures to high or low temperatures on fecundity in the flesh fly, Sarcophaga crassipalpis, Physiol. Entomol, vol.25, pp.330-336, 2000.

G. D. Ryan, L. Emiljanowicz, F. Wilkinson, M. Kornya, and J. A. Newman, Thermal Tolerances of the Spotted-Wing Drosophila Drosophila suzukii (Diptera: Drosophilidae), J. Econ. Entomol, vol.109, pp.746-752, 2016.

R. S. Sohal, Metabolic Rate and Life Span, Cell. Ageing Concepts Mech, vol.9, pp.25-40, 1976.

J. G. Sørensen, T. N. Kristensen, and J. Overgaard, Evolutionary and ecological patterns of thermal acclimation capacity in Drosophila: is it important for keeping up with climate change?, Curr. Opin. Insect Sci., Global change biology * Molecular physiology, vol.17, pp.98-104, 2016.

K. B. Storey and J. M. Storey, Insect cold hardiness: metabolic, gene, and protein adaptation1This review is part of a virtual symposium on recent advances in understanding a variety of complex regulatory processes in insect physiology and endocrinology, including development, metabolism, cold hardiness, food intake and digestion, and diuresis, through the use of omics technologies in the postgenomic era, Can. J. Zool, vol.90, pp.456-475, 2012.

M. Tatar, Reproductive aging in invertebrate genetic models, Ann. N. Y. Acad. Sci, vol.1204, pp.149-155, 2010.

N. Teets and D. Denlinger, Physiological mechanisms of seasonal and rapid cold-hardening in insects, Physiol. Entomol, vol.38, pp.105-116, 2013.

A. S. Torson, G. D. Yocum, J. P. Rinehart, W. P. Kemp, and J. H. Bowsher, Transcriptional responses to fluctuating thermal regimes underpinning differences in survival in the solitary bee Megachile rotundata, J. Exp. Biol, vol.218, pp.1060-1068, 2015.

S. Zabalou, A. Apostolaki, I. Livadaras, G. Franz, A. S. Robinson et al., Incompatible insect technique: incompatible males from a Ceratitis capitata genetic sexing strain, Entomol. Exp. Appl, vol.132, pp.232-240, 2009.

K. E. Zachariassen, E. Kristiansen, and S. A. Pedersen, Inorganic ions in cold-hardiness, Cryobiology, Special issue, vol.48, pp.126-133, 2004.

R. Zhao, Y. Xuan, X. Li, and R. Xi, Age-related changes of germline stem cell activity, niche signaling activity and egg production in Drosophila, Aging Cell, vol.7, pp.344-354, 2008.