, CDCl 3 ) ? = 157.12 (C-1), 146.53 (C-2), 136.65 (C-3), 130.33 (C-4), 129.52 (C-2), 0.32 (s, 18H, CH 3 ) ppm. 13 C{ 1 H} NMR (126 MHz, pp.117-73

, Mp (DSC; Onset): 102.37 ? C 4.2.3. 2,2 -Bis(trimethylsilyl)azobenzene (6) In an inert tube 2,2 -bis(trimethylstannyl)azobenzene (4) (80.0 mg, 0.16 mmol) was dissolved under Schlenk conditions in THF (5.00 mL) and cooled to ?78 ? C. MeLi (1.88 M in THF, 0.25 mL, 0.47 mmol) was added within 5 min and after 1 h at this temperature, trimethylsilyl chloride (9) (200 µL, 171 mg, 1.57 mmol) was added to the black reaction mixture in one portion. The reaction mixture was warmed to 25 ? C over 14 h and the solvent was removed under reduced pressure. The brown solid, dissolved in DCM (3.00 mL), was purified by a short plug of silica (eluent: n-pentane). The first orange fraction was filtered through a PTFE filter (0.45 µm). From the filtrate, the solvent was removed to obtain an orange solid

, C-3), 130.14/130.11 (C-4 and C-5), 114.68 (C-6), CDCl 3 ): ? = 4.04 ppm. IR (ATR): ? = 3059 (w), 2946 (w), 2987 (w), 2853 (w), 1968 (w), 1937 (w), 1859 (w), 1737 (w), 1581 (w), 1561 (w), 1465 (w), 1424 (w); 1296 (w), 1241 (m), 1119 (m), 1075 (w), 831 (s), 778 (s), 747 (m), vol.720, p.16290

, A schlenk tube was filled with 2,2 -bis(trimethylstannyl)azobenzene (4) (80.0 mg, 0.16 mmol) in THF (5.00 mL) and cooled to ?78 ? C. Then, MeLi (1.88 M in THF, 0.25 mL, 0.47 mmol) was added within 5 min and after 1 h at this temperature, trimethylgermanium chloride (14) (200 µL, 171 mg, 1.57 mmol) was added to the dark reaction mixture in one portion. The reaction mixture was warmed to 25 ? C over 14 h and the solvent was removed under reduced pressure. The brown solid, CDCl, vol.3, issue.7

, C-4), 129.52 (C-2), 2962 (w), 2905 (w), 1563 (w), 1463 (w), 1432 (w), 1407 (w), 1295 (w), 1234 (m), 1114 (m), 1064 (w), 953 (w), 818 (m), vol.130, p.751

, R f (n-pentane): 0.78. Mp (DSC; Onset): 82.85 ? C 4.2.5. 2,2 -Di(tert-butyl)azobenzene (10) Adapted with changes from Takahashi et al. [26] 2-tert-butylaniline (15) (5.00 g, 33.5 mmol) was dissolved in toluene (800 mL), HRMS (APCI): m/z calcd

E. Rivard, Group 14 inorganic hydrocarbon analogues, Chem. Soc. Rev, vol.45, pp.989-1003, 2016.

S. Yamaguchi and K. Tamao, Theoretical Study of the Electronic Structure of 2,2 -Bisilole in Comparison with 1,1 -Bi-1,3-cyclopentadiene: ?*-?* Conjugation and a Low-Lying LUMO as the Origin of the Unusual Optical Properties of 3,3 ,4,4 -Tetraphenyl-2,2 -bisilole, Bull. Chem. Soc. Jpn, vol.69, pp.2327-2334, 1996.

S. Yamaguchi, Y. Itami, and K. Tamao, Group 14 metalloles with thienyl groups on 2,5-positions: Effects of group 14 elements on their ?-electronic structures, Organometallics, vol.17, pp.4910-4916, 1998.

J. Linshoeft, E. J. Baum, A. Hussain, P. J. Gates, C. Näther et al., Highly tin-selective stille coupling: synthesis of a polymer containing a stannole in the main chain, Angew. Chem. Int. Ed, vol.53, pp.12916-12920, 2014.

S. Urrego-riveros, I. Ramirez-y-medina, J. Hoffmann, A. Heitmann, and A. Staubitz, Syntheses and properties of tin-containing conjugated heterocycles, Chem. Eur. J, vol.24, pp.5680-5696, 2017.

I. Ramirez-y-medina, M. Rohdenburg, F. Mostaghimi, S. Grabowsky, P. Swiderek et al., Tuning the optoelectronic properties of stannoles by the judicious choice of the organic substituents, Inorg. Chem, vol.57, pp.12562-12575, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01889801

H. M. Bandara and S. C. Burdette, Photoisomerization in different classes of azobenzene, Chem. Soc. Rev, vol.41, pp.1809-1825, 2012.

A. A. Beharry and G. A. Woolley, Azobenzene photoswitches for biomolecules, Chem. Soc. Rev, vol.40, pp.4422-4437, 2011.

M. Dong, A. Babalhavaeji, S. Samanta, A. A. Beharry, and G. A. Woolley, Red-shifting azobenzene photoswitches for in vivo use, Acc. Chem. Res, vol.48, pp.2662-2670, 2015.

Z. Mahimwalla, K. G. Yager, J. Mamiya, A. Shishido, A. Priimagi et al., Azobenzene photomechanics: Prospects and potential applications, Polym. Bull, vol.69, pp.967-1006, 2012.

E. Merino and M. Ribagorda, Control over molecular motion using the cis-trans photoisomerization of the azo group, Beilstein J. Org. Chem, vol.8, pp.1071-1090, 2012.

Z. Ahmed, A. Siiskonen, M. Virkki, and A. Priimagi, Controlling azobenzene photoswitching through combined ortho-fluorination and -amination, Chem. Commun, vol.53, pp.12520-12523, 2017.

D. Bléger, J. Schwarz, A. M. Brouwer, and S. Hecht, Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light, J. Am. Chem. Soc, vol.134, pp.20597-20600, 2012.

Y. Yu, M. Nakano, and T. Ikeda, Directed bending of a polymer film by light, Nature, vol.425, p.145, 2003.

E. Kizilkan, J. Strueben, X. Jin, C. F. Schaber, R. Adelung et al., Influence of the porosity on the photoresponse of a liquid crystal elastomer, Roy. Soc. Open Sci, vol.3, 2016.

T. H. Nguyen, N. Gigant, and D. Joseph, Advances in direct metal-catalyzed functionalization of azobenzenes, ACS Catal, vol.8, pp.1546-1579, 2018.

F. Kakiuchi, M. Matsumoto, K. Tsuchiya, K. Igi, T. Hayamizu et al., The ruthenium-catalyzed silylation of aromatic C-H bonds with triethylsilane, J. Organomet. Chem, vol.686, pp.134-144, 2003.

T. T. Nguyen, A. Boussonnière, E. Banaszak, A. Castanet, K. P. Nguyen et al., Chemoselective deprotonative lithiation of azobenzenes: Reactions and mechanisms, J. Org. Chem, vol.79, pp.2775-2780, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02163288

J. Li, W. Cong, Z. Gao, J. Zhang, H. Yang et al., Rh(III)-catalyzed regioselective mono-and di-iodination of azobenzenes using alkyl iodide, Org. Biomol. Chem, vol.16, pp.3479-3486, 2018.

M. Yamamura, N. Kano, T. Kawashima, T. Matsumoto, J. Harada et al., Crucial role of N···Si interactions in the solid-state coloration of disilylazobenzenes, J. Org. Chem, vol.73, pp.8244-8249, 2008.

N. Kano, F. Komatsu, and T. Kawashima, Synthesis and structure of azobenzenes bearing silyl, germyl, and stannyl groups at 2-position, Chem. Lett, vol.30, pp.338-339, 2001.

N. Kano, F. Komatsu, M. Yamamura, and T. Kawashima, Reversible photoswitching of the coordination numbers of silicon in organosilicon compounds bearing a 2-(phenylazo)phenyl group, J. Am. Chem. Soc, vol.128, pp.7097-7109, 2006.

J. Strueben, J. Hoffmann, C. Naether, and A. Staubitz, Crystal structures of 3,3'-bis(hydroxydimethylsilanyl) azobenzene and 4,4'-bis(hydroxydimethylsilane)azobenzene, Acta Cryst. E, vol.72, pp.1590-1594, 2016.

J. Strueben, M. Lipfert, J. Springer, C. A. Gould, P. J. Gates et al., High-yield lithiation of azobenzenes by tin-lithium exchange, Chem. Eur. J, vol.21, pp.11165-11173, 2015.

J. Strueben, P. J. Gates, and A. Staubitz, Tin-functionalized azobenzenes as nucleophiles in stille cross-coupling reactions, J. Org. Chem, vol.79, pp.1719-1728, 2014.

H. Takahashi, T. Ishioka, Y. Koiso, M. Sodeoka, and Y. Hashimoto, Anti-androgenic activity of substituted azoand azoxy-benzene derivatives, Bio. Pharm. Bull, vol.23, pp.1387-1390, 2000.

K. Seth, S. R. Roy, A. Kumar, and A. K. Chakraborti, The palladium and copper contrast: A twist to products of different chemotypes and altered mechanistic pathways, Catal. Sci. Tech, vol.6, pp.2892-2896, 2016.

K. Monir, M. Ghosh, S. Mishra, A. Majee, and A. Hajra, Phenyliodine(III) diacetate (PIDA) mediated synthesis of aromatic azo compounds through oxidative dehydrogenative coupling of anilines: Scope and mechanism, Eur. J. Org. Chem, pp.1096-1102, 2013.

L. J. Gooßen and A. S. Ferwanah, A mild and efficient protocol for the catalytic silylation of aryl bromides, Synlett, pp.1801-1803, 2000.

E. Mcneill, T. E. Barder, and S. L. Buchwald, Palladium-catalyzed silylation of aryl chlorides with hexamethyldisilane, Org. Lett, vol.9, pp.3785-3788, 2007.

N. Komami, K. Matsuoka, T. Yoshino, and S. Matsunaga, Palladium-catalyzed germylation of aryl bromides and aryl triflates using hexamethyldigermane, Synthesis, vol.50, pp.2067-2075, 2018.

D. P. Arnold and P. R. Wells, Hexamethyldilead: I. Preparation, thermal decomposition and methanolysis, J. Organomet. Chem, vol.111, pp.269-283, 1976.

A. A. Zavitsas, The relation between bond lengths and dissociation energies of carbon-carbon bonds, J. Phys. Chem, vol.107, pp.897-989, 2003.

M. F. Lappert, J. B. Pedley, J. Simpson, T. R. Spalding, . ;-=-c et al., Bonding studies of compounds of boron and the group IV element: VI, Mas spectrometric studies on compounds Me 4 M and Me 3 M-M Me 3 (M and M, vol.29, pp.195-208, 1971.

J. Z. Dávalos and T. Baer, Thermochemistry and dissociative photoionization of Si(CH 3 ) 4 , BrSi(CH 3 ) 3 , ISi(CH 3 ) 3 , and Si 2 (CH 3 ) 6 studied by threshold photoelectron?photoion coincidence spectroscopy, J. Phys. Chem. A, vol.110, pp.8572-8579, 2006.

V. Farina, S. Kapadia, B. Krishnan, C. Wang, and L. S. Liebeskind, On the nature of the "copper effect" in the stille cross-coupling, J. Org. Chem, vol.59, pp.5905-5911, 1994.

A. L. Casado, P. Espinet, and A. M. Gallego, Mechanism of the stille reaction. 2. Couplings of aryl triflates with vinyltributyltin. Observation of intermediates. A more comprehensive scheme, J. Am. Chem. Soc, vol.122, pp.11771-11782, 2000.

V. K. Aggarwal, A. C. Staubitz, and M. Owen, Optimization of the mizoroki?heck reaction using design of experiment (DoE), Org. Process. Res. Dev, vol.10, pp.64-69, 2006.

P. Knochel, M. C. Yeh, S. C. Berk, and J. Talbert, Synthesis and reactivity toward acyl chlorides and enones of the new highly functionalized copper reagents RCu(CN)ZnI, J. Org. Chem, vol.53, pp.2390-2392, 1988.

U. Krueerke, Halogen-austausch an chlorsilanen und die tetrahydrofuran-spaltung durch brom-und jodsilane, Chem. Ber, vol.95, pp.174-182, 1962.

M. Olaru, R. Kather, E. Hupf, E. Lork, S. Mebs et al., A monoaryllead trichloride that resists reductive elimination, Angew. Chem. Int. Ed, vol.57, pp.5917-5920, 2018.

J. Yoshino, N. Kano, and T. Kawashima, Fluorescent azobenzenes and aromatic aldimines featuring an N-B interaction, Dalton Trans, vol.42, pp.15826-15834, 2013.

N. Kano, M. Yamamura, and T. Kawashima, 2,2'-Disilylazobenzenes featuring double intramolecular nitrogen···silicon coordination: A photoisomerizable fluorophore, Dalton Trans, vol.44, pp.16256-16265, 2015.

S. E. Denmark and C. S. Regens, Palladium-catalyzed cross-coupling reactions of organosilanols and their salts: practical alternatives to boron-and tin-based methods, Acc. Chem. Res, vol.41, pp.1486-1499, 2008.

Y. Hatanaka and T. Hiyama, Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsilicate, J. Org. Chem, vol.53, pp.918-920, 1988.

M. Kosugi, T. Tanji, Y. Tanaka, A. Yoshida, K. Fugami et al., Palladium-catalyzed reaction of 1-aza-5-germa-5-organobicyclo[3.3.3]undecane with aryl bromide, J. Organomet. Chem, vol.508, pp.255-257, 1996.

J. W. Faller and R. G. Kultyshev, Palladium-catalyzed cross-coupling reactions of allyl, phenyl, alkenyl, and alkynyl germatranes with aryl iodides, Organometallics, vol.21, pp.5911-5918, 2002.

T. Nakamura, H. Kinoshita, H. Shinokubo, and K. Oshima, Biaryl synthesis from two different aryl halides with tri(2-furyl)germane, Org. Lett, vol.4, pp.3165-3167, 2002.

C. Cordovilla, C. Bartolomé, J. M. Martínez-ilarduya, and P. Espinet, The stille reaction, 38 years later, ACS Catal, vol.5, pp.3040-3053, 2015.

R. Tanaka, T. Kawahara, Y. Shinto, Y. Nakayama, and T. Shiono, An alternative method for the preparation of trialkylaluminum-depleted modified methylaluminoxane (dMMAO), Macromolecules, vol.50, pp.5989-5993, 2017.

O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard, and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program, J. Appl. Crystallogr, vol.42, pp.339-341, 2009.

J. Harada, K. Ogawa, and S. Tomoda, Molecular Motion and Conformational Interconversion of Azobenzenes in Crystals as Studied by X-ray Diffraction, Acta Cryst. Sec. B, vol.53, pp.662-672, 1997.

Y. Nawata, H. Iwasaki, and Y. Saito, The Crystal Structure of Bis(pyridine-2-carboxamido)nickel(II) Dihydrate, Bull. Chem. Soc. Jpn, vol.40, pp.515-521, 1967.

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution, Sample Availability: Samples of the compounds 6, 7, 8 and 10 are available from the authors. © 2019 by the authors. Licensee MDPI