, Brown solid, yield = 85%, 93.0 mg, Mp > 250 o C dec. 1 H NMR (400 MHz, acetone-d 6 ): ? = 9.10 (br, 1H), 7.96-7.90 (m, 4H), vol.7

, 2-(6-Fluoro-2-hydroxyphenyl)isoindoline-1,3-dione (2l). Yellow solid, Hz, 1H), 7.66 (dd, J = 8.8, 2.4 Hz, 1H), 6.92 (d, J = 8.8 Hz, 1H) ppm. 13 C{ 1 H} NMR (100 MHz, p.400

. Mhz, ?? = 9.31 (br, 1H), 8.01-7.94 (m, 4H), vol.7

, Hz, 1H) ppm. 13 C{ 1 H} NMR (100 MHz, acetone-d6): ? = 167.2, 160.6 (d, JC-F = 246.5 Hz), vol.156, p.376

. Mhz, HRMS (ESI) calcd. for [M+Na] + C14H8NO3FNa 280.0380, found 280.0383 (1 ppm). 2-(2-Hydroxy-6-methylphenyl)isoindoline-1,3-dione (2m)

, Colorless solid, yield = 28%, 21.1 mg, pp.145-148

. Mhz, 22 (dd, J = 8.0, 8.0 Hz, 1H), 6.88 (dd, J = 8.0, 8.0 Hz, 2H), 2.14 (s, 3H) ppm. 13 C{ 1 H} NMR (100 MHz, acetone-d6): ? = 167, acetone-d6): ? = 8.75 (br, 1H), 7.97-7.91 (m, 4H), vol.7, p.400

. Mhz, acetone-d6): ? = 8.77 (br, 1H), 7.74-7.72 (m, 2H), 7.65-7.63 (m, 1H), 7.35-7.29 (m, 2H), vol.7, p.7

, -hydroxyphenyl)isoindoline-1,3-dione (2o)

. Mhz, acetone-d6): ? = 8.82 (br, 1H), 7.95

, Hz, 1H) ppm. 13 C{ 1 H} NMR (100 MHz, acetone-d6): ? = 166.8 (d, JC-F = 3.1 Hz), vol.164

J. C. Hz-;-d, J. C. -f-=-;-d, and J. -f-=-;-d, ppm). 4-Chloro-2-(2-hydroxyphenyl)isoindoline-1,3-dione (2p), Hz), 117.6 ppm. 19 F{ 1 H} NMR (376 MHz, acetone-d6): ? = -115.7 ppm. HRMS (ESI), vol.138, p.400

. Mhz, ?? = 8.82 (br, 1H), 7.91-7.84 (m, 3H)

. Hz, -Hydroxyphenyl)-4-nitroisoindoline-1,3-dione (2q). Colorless solid, p.400

. Mhz, ?? = 8.87 (br, 1H), 8.30-8.25 (m, 2H), vol.8

, -Hydroxyphenyl)-5-methylisoindoline-1,3-dione (2r), Hz, 1H), 6.99 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H) ppm. 13 C{ 1 H} NMR (100 MHz, acetone-d6): ? = 165, vol.9, p.400

. Mhz, acetone-d6): ? = 8.71 (br, 1H), 7.81 (d, J = 7.6 Hz, 1H), 7.75 (s, 1H), 7.71 (d, J = 7.6 Hz, 1H), vol.7, pp.35-42

, -hydroxyphenyl)isoindoline-1,3-dione (2s)

, Colorless solid, yield = 87%, 77.0 mg, pp.116-119

. Mhz, acetone-d6): ? = 7.96-7.95 (m, 2H), 7.86 (d, J = 8.4 Hz, 1H), 7.36-7.29 (m, 2H)

. Mhz,

, -hydroxyphenyl)isoindoline-1,3-dione (2t), p.400

. Mhz, Hz, 1H), 7.71-7.63 (m, 2H), 7.36-7.30 (m, 2H), 7.07 (dd, J = 8.0, 1.2 Hz, 1H), 6.98 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H) ppm. 13 C{ 1 H} NMR (100 MHz, acetoned6):?? = 167.2 (d, JC-F = 252.5 Hz), 166.9, 166.6 (d, JC-F = 2.9 Hz), 154.8, 136.3 (d, JC-F = 9.5 Hz), 131.3 (d, JC-F = 17.7 Hz), 129.4 (d, JC-F = 2.8 Hz), 126.8 (d, JC-F = 9

, 7.00 (ddd, J = 8.0, 8.0, 1.2 Hz, 1H) ppm. 13 C{ 1 H} NMR (100 MHz, acetone-d6, Hz, 1H), 8.23 (d, J = 8.0 Hz, 1H), 7.39-7.33 (m, 2H), 7.09 (dd, J = 8.0, 1.2 Hz, 1H), vol.104, p.50

, 25 (ddd, J = 8.0, 8.0, 1.6 Hz, 1H), 7.09 (dd, J = 8.0, 1.6 Hz, 1H), 6.99 (d, J = 8.0 Hz, 1H), 6.91 (dd, Colorless solid, yield = 91%, 66.9 mg. Mp: 232-235 o C. 1 H NMR (400 MHz, acetone-d6): ? = 8.62 (br, 1H), vol.7

, The spectral data match those previously reported, -Hydroxyphenyl)pyrrolidine-2,5-dione (2w). Yellow solid, yield = 89%, 33.9 mg. 1 H NMR (400 MHz, acetone-d6): ? = 8.47 (br, 1H), 7.28-7.24 (m, 1H), vol.109, p.55

, 00 (dd, J = 8.0, 1.2 Hz, 1H), 6.92 (ddd, J = 7.6, 7.6, 1.2 Hz, 1H), 6.62 (q, J = 2.0 Hz, 1H), 2.11 (d, J = 2.0 Hz, 3H) ppm. 13 C{ 1 H} NMR (100 MHz, acetone-d6): ? = 171, Colorless solid, yield = 89%, 54.2 mg. 1 H NMR (400 MHz, acetone-d6): ? = 8.61 (br, 1H), 7.28 (ddd, J = 8.0, 8.0, 2.0 Hz, 1H), 7.15 (dd, J = 8.0, 2.0 Hz, 1H), vol.7, p.400

. Mhz and . Dmso-d6, ?? = 9.62 (br, 1H), 8.50 (d, J = 7.6 Hz, 4H), vol.7, p.90

?. References-;-chen, M. S. White, M. C. Fuchs, and P. L. , A Predictably Selective Aliphatic C-H Oxidation Reaction for Complex Molecule Synthesis, Alsters, P. L. Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives, vol.318, p.783, 2007.

N. Mizuno, T. Wiley-vch:-weinheim-;-newhouse, P. S. Baran, C. If, . Talk et al., Trends in Applying C-H Oxidation to the Total Synthesis of Natural Products, Modern Heterogeneous Oxidation Catalysis: Design, Reactions and Characterization, vol.50, p.1640, 2009.

M. Schmidt, S. Wang, Y. Younes, S. Zhang, W. Ray et al., Biocatalytic Oxidation Reactions: A Chemist's Perspective, Status of Reactive NonHeme Metal-Oxygen Intermediates in Chemical and Enzymatic Reactions, vol.57, p.9238, 2018.

S. D. Mccann, S. S. Stahl, N. Gagnon, W. B. Tolman, W. N. Oloo et al., 2126. (d) Itoh, S. Developing Mononuclear Copper-Active-Oxygen Complexes Relevant to Reactive Intermediates of Biological Oxidation Reactions, Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst, vol.136, p.5274, 2010.

T. W. Lyons and M. S. Sanford, Palladium-Catalyzed Ligand-Directed C-H Functionalization Reactions, Chem. Rev, vol.110, p.1147, 2010.

Y. Rao, Pd-Catalyzed sp 2 C-H Hydroxylation with TFA/TFAA via Weak coordinations, Chem. Soc. Rev, vol.40, p.2472, 2011.

V. S. Thirunavukkarasu, S. I. Kozhushkov, L. Ackermann, X. Yang, Y. Sun et al., A General Approach Towards Catechol and Pyrogallol Through Ruthenium-and Palladium-Catalyzed C-H Hydroxylation by Weak Coordination, Angew. Chem. Int. Ed, vol.50, issue.6, p.11285, 2014.

H. Choe, Y. Jeong, J. H. Lee, S. Hong, . Ru et al., II)-Catalyzed Site-Selective Hydroxylation of Flavone and Chromone Derivatives: The Importance of the 5-Hydroxyl Motif for the Inhibition of Aurora Kinases, Adv. Synth. Catal, vol.17, p.410, 2015.

K. Raghuvanshi, D. Zell, L. Ackermann, G. G. Ruthenium-;-dias, T. Rogge et al., Pd-Catalyzed C-H Oxygenation with TFA/TFAA: Expedient Access to Oxygen-Containing Heterocycles and Late-Stage Drug Modification, Angew. Chem. Int. Ed, vol.54, issue.7, p.6186, 1278.

G. Shan, X. Han, Y. Lin, S. Yu, and Y. Rao, Broadening the Catalyst and Reaction Scope of Regio-and Chemoselective C-H Oxygenation: a Convenient and Scalable Approach to 2-Acylphenols by Intriguing Rh(II) and Ru(II) catalysis, Org. Biomol. Chem, p.11, 2013.

Y. Sun, T. Sun, Y. Wu, X. Zhang, Y. Rao et al., Facile Approach to Nonlinear Optical Side-Chain Aromatic Polyimides with Large Second-Order Nonlinearity and Thermal Stability, J. Am. Chem. Soc, vol.117, issue.9, 1995.

S. H. Han, N. Misdan, S. Kim, C. M. Doherty, A. J. Hill et al., Identification of the Binding Modes of N-Phenylphthalimides Inhibiting Bacterial Thymidylate Synthase through X-Ray Crystallography Screening, Thermally Rearranged (TR) Polybenzoxazole: Effects of Diverse Imidization Routes on Physical Properties and Gas Transport Behaviors. Macromolecules, vol.117, p.10081, 1995.

C. Zhang, Y. Song, Z. Sang, L. Zhan, Y. Rao et al., Mixing O-Containing and N-Containing Directing Groups for C-H Activation: A Strategy for the Synthesis of Highly Functionalized 2,2'-Biaryls, J. Org. Chem, vol.83, issue.13, p.2582, 2018.

C. Catalyzed, Acyloxylation of Phenols with Removable Auxiliary

. J. Eur, T. Sarkar, S. Pradhan, T. Punniyamurthy, Y. Ruthenium-;-wu et al., Organic Sensitizers from D-?-A to D-A-?-A: Effect of the Internal Electron-Withdrawing Units on Molecular Absorption, Energy Levels and Photovoltaic Performances, Chem. Soc. Rev, vol.21, issue.14, p.7098, 2013.

G. L. Tullos, J. M. Powers, S. J. Jeskey, L. J. Mathias, Y. Yuan et al., Unmasking Amides: Ruthenium-Catalyzed Protodecarbonylation of N-Substituted Phthalimide Derivatives, Macromolecules, vol.32, issue.16, p.6404, 1999.

C. Bruneau and R. Gramage-doria, Merging Transition Metal Catalysis with Phthalimides: a New Entry to Useful Building Blocks, Synthesis, vol.50, p.4216, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01908298

J. Hsieh, C. Cheng, N. A. Zakharova, and N. V. Khromov-borisov, Alkylated Aromatic Amines. VIII. Role of the Spatial Factor in the Reactions of Methyl Iodide with Monotertiary p-Phenylenediamines Zhurnal Organicheskoi Khimii, Chem. Commun, vol.36, issue.18, p.116, 1970.

L. K. Rasmussen, M. Begtrup, and T. Ruhland, Resin-Bound Triaryl Bismuthanes and Bismuth Diacetates: Novel Multidirectional Linkers and Novel Resin-Bound Arylation Reagents, J. Org. Chem, p.6890, 2004.

X. Wang, W. Xiong, Y. Huang, J. Zhu, Q. Hu et al., Palladium-Catalyzed Synthesis of 1H-Indenes and Phthalimides via Isocyanide Insertion, Org. Lett, p.5818, 2017.

R. Shrestha, P. Mukherjee, Y. Tan, Z. C. Litman, and J. F. Hartwig, Sterically Controlled, Palladium-Catalyzed Intermolecular Amination of Arenes, J. Am. Chem. Soc, p.8480, 2013.

S. A. Worlikar and R. C. Larock, Palladium-Catalyzed One-Step Synthesis of Isoindole-1,3-diones by Carbonylative Cyclization of o-Halobenzoates and Primary Amines, J. Org. Chem, p.7175, 2008.

V. Kumar and G. S. Banker, Incompatibility of Polyvinyl Acetate Phthalate with Benzocaine: Isolation and Characterization of 4-Phthalimidobenzoic Acid Ethyl Ester, Adv. Synth. Catal, vol.79, p.314, 1992.

S. L. Yedage, D. S. ;-d'silva, and B. M. Bhanage, MnO2 Catalyzed Formylation of Amines and Transamidation of Amides Under Solvent-Free Conditions, RSC Adv, vol.5, p.80441, 2015.

S. Liu, Q. Deng, W. Fang, J. Gong, M. Song et al., Efficient and Scalable Pd-Catalyzed Double Aminocarbonylations Under Atmospheric Pressure at Low Catalyst Loadings, Org. Chem. Front, 1261.

X. Dong, J. Fan, X. Shi, K. Liu, P. Wang et al., Ruthenium(II)-Catalyzed N-Substituted Phthalimide Synthesis via C-H Activation/[3+2] Annulation, J. Organomet. Chem, vol.779, p.13932, 2014.

F. J. Williams, P. E. Donahue, Y. Shibata, K. ;. Sasaki, Y. Hashimoto et al., Phenylphthalimides with Tumor Necrosis Factor Alpha Production-Enhancing Activity, Chem. Pharm. Bull, vol.42, p.156, 1977.

M. Wang, J. Lu, J. Ma, Z. Zhang, and F. Wang, Cuprous Oxide Catalyzed Oxidative C-C Bond Cleavage for C-N bond formation: Synthesis of Cyclic Imides from Ketones and Amines, Angew. Chem. Int. Ed, vol.54, p.14061, 2015.

H. J. Kim, J. Kim, S. H. Cho, and S. Chang, Intermolecular Oxidative C-N Bond Formation under Metal-Free Conditions: Control of Chemoselectivity between Aryl sp 2 and Benzylic sp 3 C-H Bond Imidation, J. Am. Chem. Soc, p.16382, 2011.

K. Kaminski, B. Wiklik, and J. Obniska, Synthesis, Anticonvulsant Properties, and SAR Analysis of Differently Substituted Pyrrolidine-2,5-diones and Piperidine-2,6-diones, Arch. Pharm. Chem. Life Sci, vol.347, p.840, 2014.

M. Kobeissi, O. Yazbeck, and Y. Chreim, A Convenient One-Pot Synthesis of Polysubstituted Pyrroles from N-Protected Succinimides, Tetrahedron Lett, vol.55, p.2523, 2014.

N. Matuszak, G. G. Muccioli, G. Labar, D. M. Lambert, T. M. Pyriadi et al., Synthesis of Substituted Amines and Isoindolinones: Catalytic Reductive Amination Using Abundantly Available AlCl3/PMHS, Selective and Efficient Iridium Catalyst for the Reductive Amination of Levulinic Acid into Pyrrolidones, vol.52, p.4150, 1999.

C. Lin, L. Zhen, Y. Cheng, H. Du, H. Zhao et al., Visible Light-Induced Isoindole Formation To Trigger Intermolecular Diels-Alder Reactions in the Presence of Air, Org. Lett, p.2684, 2015.

R. J. Perry and S. R. Turner, Preparation of N-Substituted Phthalimides by the Palladium-Catalyzed Carbonylation and Coupling of o-Dihalo Aromatics and Primary Amines, J. Org. Chem, p.6573, 1991.

C. D. Chu, Y. H. Qi, and W. Hao, A More Efficient Synthetic Process of N-Arylphthalimides in Ionic Liquid

, Catal. Commun, 1527.

P. Wójcik and A. M. Trzeciak, The aminocarbonylation of 1,2-diiodoarenes with primary and secondary amines catalyzed by palladium complexes with imidazole ligands, Appl. Catal. A, p.73, 2018.

C. Yao, Y. Bao, T. Lu, Q. Zhou, Y. Yamamoto et al., Stereoselective Synthesis of Functionalized Benzooxazepino[5,4-a]isoindolone Derivatives via Cesium Carbonate Catalyzed Formal [5+2] Annulation of 2-(2-Hydroxyphenyl)isoindoline-1,3-dione with Allenoates, Bioorg. Med. Chem, issue.43, p.6807, 2015.

S. Mansor, N. Zakaria, A. Ariffin, S. W. Ng, M. J. N--;-caulfield et al., Hydroxyphenyl)-4-nitrophthalimide, Synthesis of Model Compounds and Their Reaction with Hexamethylenetetramine. Polymer, vol.1, p.6541, 1998.

J. Wang, L. Yang, C. Hou, and H. Cao, A New N-Imidazolyl-1,8-naphthalimide Based Fluorescence Sensor for Fluoride Detection, Org. Biomol. Chem, vol.10, p.6271, 2012.

M. A. Khadim and L. D. Colebrook, Carbon-13 delta shifts and steric interactions in N-Aryl-1-isoindolinones and -isoindoline-1,3-diones, Magnet.. Res. Chem, p.259, 1985.

H. Xu and C. Wolf, Copper Catalyzed Coupling of Aryl Chlorides, Bromides and Iodides with Amines and Amides, Chem. Commun, p.1715, 2009.

Y. Duan, T. Song, X. Dong, and Y. Yang, Enhanced Catalytic Performance of Cobalt Nanoparticles Coated with a N,P-Codoped Carbon Shell Derived from Biomass for Transfer Hydrogenation of Functionalized Nitroarenes, Green Chem, 2018.