R. J. Deshaies, Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy, BMC Biol, vol.12, p.94, 2014.

H. J. Clarke, J. E. Chambers, E. Liniker, and S. J. Marciniak, Endoplasmic reticulum stress in malignancy, Cancer Cell, vol.25, pp.563-73, 2014.

C. Hetz and F. R. Papa, The unfolded protein response and cell fate control, Mol Cell, vol.69, pp.169-81, 2018.

P. Moreau, P. G. Richardson, M. Cavo, R. Z. Orlowski, S. Miguel et al., Proteasome inhibitors in multiple myeloma: 10 years later, Blood, vol.120, pp.947-59, 2012.

G. Giaever, A. M. Chu, L. Ni, C. Connelly, L. Riles et al., Functional profiling of the Saccharomyces cerevisiae genome, Nature, vol.418, pp.387-91, 2002.

J. M. Muller, K. Deinhardt, I. Rosewell, G. Warren, and D. T. Shima, Targeted deletion ofp97 (VCP/CDC48) in mouse results in early embryonic lethality, Biochem Biophys Res Commun, vol.354, pp.459-65, 2007.

J. M. Peters, M. J. Walsh, and W. W. Franke, An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF, EMBO J, vol.9, pp.1757-67, 1990.

H. Meyer, M. Bug, and S. Bremer, Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system, Nat Cell Biol, vol.14, pp.117-140, 2012.

Y. Sasagawa, A. Higashitani, T. Urano, T. Ogura, and K. Yamanaka, CDC-48/p97 is required for proper meiotic chromosome segregation via controlling AIR-2/Aurora B kinase localization in Caenorhabditis elegans, J Struct Biol, vol.179, pp.104-115, 2012.

K. Uchiyama, G. Totsukawa, M. Puhka, Y. Kaneko, E. Jokitalo et al., p37 is a p97 adaptor required for Golgi and ER biogenesis in interphase and at the end of mitosis, Dev Cell, vol.11, pp.803-819, 2006.

R. Verma, R. Oania, R. Fang, G. T. Smith, and R. J. Deshaies, Cdc48/p97 mediates UV-dependent turnover of RNA Pol II, Mol Cell, vol.41, pp.82-92, 2011.

C. Rabouille, T. P. Levine, J. M. Peters, and G. Warren, An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments, Cell, vol.82, pp.905-919, 1995.

P. C. Janiesch, J. Kim, J. Mouysset, R. Barikbin, H. Lochmuller et al., The ubiquitin-selective chaperone CDC-48/p97 links myosin assembly to human myopathy, Nat Cell Biol, vol.9, pp.379-90, 2007.

K. Cao, R. Nakajima, H. H. Meyer, and Y. Zheng, The AAA-ATPase Cdc48/p97 regulates spindle disassembly at the end of mitosis, Cell, vol.115, pp.355-67, 2003.

R. Verma, R. S. Oania, N. J. Kolawa, and R. J. Deshaies, Cdc48/p97 promotes degradation of aberrant nascent polypeptides bound to the ribosome, eLife, vol.2, p.308, 2013.

Q. Defenouillere, Y. Yao, J. Mouaikel, A. Namane, A. Galopier et al., Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products, Proc Natl Acad Sci, vol.110, pp.5046-51, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01404018

Y. Ye, H. H. Meyer, and T. A. Rapoport, TheAAA ATPase Cdc48/p97and its partners transport proteins from the ER into the cytosol, Nature, vol.414, pp.652-658, 2001.

Y. Ye, H. H. Meyer, and T. A. Rapoport, Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains, J Cell Biol, vol.162, pp.71-84, 2003.

Y. Ye, Y. Shibata, M. Kikkert, S. Van-voorden, E. Wiertz et al., Recruitment of the p97 ATPase and ubiquitin ligases to the site of retrotranslocation at the endoplasmic reticulum membrane, Proc Natl Acad Sci, vol.102, pp.14132-14140, 2005.

E. Tresse, F. A. Salomons, J. Vesa, L. C. Bott, V. Kimonis et al., VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD, Autophagy, vol.6, pp.217-244, 2010.

J. S. Ju, S. E. Miller, P. I. Hanson, and C. C. Weihl, Impaired protein aggregate handling and clearance underlie the pathogenesis of p97/ VCP-associated disease, J Biol Chem, vol.283, pp.30289-99, 2008.

T. F. Chou, S. J. Brown, D. Minond, B. E. Nordin, K. Li et al., Reversible inhibitor ofp97, DBeQ, impairs both ubiquitindependent and autophagic protein clearance pathways, Proc Natl Acad Sci, vol.108, pp.4834-4843, 2011.

P. Carvalho, V. Goder, and T. A. Rapoport, Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins, Cell, vol.126, pp.361-73, 2006.

J. Steffen, M. Seeger, A. Koch, and E. Kruger, Proteasomal degradation is transcriptionally controlled by TCF11 via an ERAD-dependent feedback loop, Mol Cell, vol.40, pp.147-58, 2010.

S. K. Radhakrishnan, W. Den-besten, and R. J. Deshaies, p97-dependent retrotranslocation and proteolytic processing govern formation of active Nrf1 upon proteasome inhibition, eLife, vol.3, p.1856, 2014.

Z. Sha and A. L. Goldberg, Proteasome-mediated processing of Nrf1 is essential for coordinate induction of all proteasome subunits and p97, Curr Biol, vol.24, pp.1573-83, 2014.

D. Fessart, E. Marza, S. Taouji, F. Delom, and E. Chevet, P97/CDC-48: proteostasis control in tumor cell biology, Cancer Lett, vol.337, pp.26-34, 2013.

P. Magnaghi, D. 'alessio, R. Valsasina, B. Avanzi, N. Rizzi et al., Covalent and allosteric inhibitors of the ATPase VCP/p97 induce cancer cell death, Nat Chem Biol, vol.9, pp.548-56, 2013.

D. J. Anderson, L. Moigne, R. Djakovic, S. Kumar, B. Rice et al., Targeting the AAA ATPase p97 as an approach to treat cancer through disruption of protein homeostasis, Cancer Cell, vol.28, pp.653-65, 2015.

K. Parzych, T. M. Chinn, Z. Chen, S. Loaiza, F. Porsch et al., Inadequate fine-tuning of protein synthesis and failure of amino acid homeostasis following inhibition of the ATPase VCP/ p97, Cell Death Dis, vol.6, p.2031, 2015.

Y. Tsujimoto, Y. Tomita, Y. Hoshida, T. Kono, T. Oka et al., Elevated expression of valosin-containing protein (p97) is associated with poor prognosis of prostate cancer, Clin Cancer Res, vol.10, pp.3007-3019, 2004.

S. Yamamoto, Y. Tomita, Y. Hoshida, S. Takiguchi, Y. Fujiwara et al., Expression level of valosin-containing protein is strongly associated with progression and prognosis of gastric carcinoma, J Clin Oncol, vol.21, pp.2537-2581, 2003.

S. Yamamoto, Y. Tomita, S. Nakamori, Y. Hoshida, H. Nagano et al., Elevated expression of valosin-containing protein (p97) in hepatocellular carcinoma is correlated with increased incidence of tumor recurrence, J Clin Oncol, vol.21, pp.447-52, 2003.

Z. Skrott, M. Mistrik, K. K. Andersen, S. Friis, D. Majera et al., Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4, Nature, vol.552, p.194, 2017.

L. Moigne, R. Aftab, B. T. Djakovic, S. Dhimolea, E. Valle et al., The p97 inhibitor CB-5083 is a unique disrupter of protein homeostasis in models of multiple myeloma, Mol Cancer Ther, vol.16, pp.2375-86, 2017.

H. J. Zhou, J. Wang, B. Yao, S. Wong, S. Djakovic et al., Discovery of a first-in-class, potent, selective, and orally bioavailable inhibitor of the p97 AAA ATPase (CB-5083), J Med Chem, vol.58, pp.9480-97, 2015.

T. V. Nguyen, J. Li, C. C. Lu, J. L. Mamrosh, G. Lu et al., p97/VCP promotes degradation of CRBN substrate glutamine synthetase and neosubstrates, Proc Natl Acad Sci, vol.114, pp.3565-71, 2017.

M. G. Vander-heiden and R. J. Deberardinis, Understanding the intersections between metabolism and cancer biology, Cell, vol.168, pp.657-69, 2017.

L. B. Sullivan, D. Y. Gui, and M. Heiden, Altered metabolite levels in cancer: implications for tumour biology and cancer therapy, Nat Rev Cancer, vol.16, pp.680-93, 2016.

N. N. Pavlova and C. B. Thompson, The emerging hallmarks of cancer metabolism, Cell Metab, vol.23, pp.27-47, 2016.

J. M. Hill, J. Roberts, E. Loeb, A. Khan, A. Maclellan et al., Lasparaginase therapy for leukemia and other malignant neoplasms. Remission in human leukemia, JAMA, vol.202, pp.882-890, 1967.

O. Warburg, F. Wind, and E. Negelein, The metabolism of tumors in the body, J Gen Physiol, vol.8, pp.519-549, 1927.

R. E. Neuman and T. A. Mccoy, Dual requirement of Walker carcinosarcoma 256 in vitro for asparagine and glutamine, Science, vol.124, pp.124-129, 1956.

A. E. Pasieka and J. F. Morgan, Glutamine metabolism of normal and malignant cells cultivated in synthetic media, Nature, vol.183, pp.1201-1203, 1959.

J. Son, C. A. Lyssiotis, H. Ying, X. Wang, S. Hua et al., Glutamine supports pancreatic cancer growth through a KRASregulated metabolic pathway, Nature, vol.496, pp.101-106, 2013.

J. J. Kamphorst, M. Nofal, C. Commisso, S. R. Hackett, W. Lu et al., Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein, Cancer Res, vol.75, pp.544-53, 2015.

M. Pan, M. A. Reid, X. H. Lowman, R. P. Kulkarni, T. Q. Tran et al., Regional glutamine deficiency in tumours promotes dedifferentiation through inhibition of histone demethylation, Nat Cell Biol, vol.18, pp.1090-101, 2016.

S. M. Davidson, T. Papagiannakopoulos, B. A. Olenchock, J. E. Heyman, M. A. Keibler et al., Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer, Cell Metab, vol.23, pp.517-545, 2016.

A. Hirayama, K. Kami, M. Sugimoto, M. Sugawara, N. Toki et al., Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry, Cancer Res, vol.69, pp.4918-4943, 2009.

A. L. Huber, J. Lebeau, P. Guillaumot, V. Petrilli, M. Malek et al., p58(IPK)-mediated attenuation of the proapoptotic PERK-CHOP pathway allows malignant progression upon low glucose, Mol Cell, vol.49, pp.1049-59, 2013.

Y. Saito, R. H. Chapple, A. Lin, A. Kitano, and D. Nakada, AMPK protects leukemia-initiating cells in myeloid leukemias from metabolic stress in the bone marrow, Cell Stem Cell, vol.17, pp.585-96, 2015.

K. Birsoy, R. Possemato, F. K. Lorbeer, E. C. Bayraktar, P. Thiru et al., Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides, Nature, vol.508, pp.108-120, 2014.

B. A. Castilho, R. Shanmugam, R. C. Silva, R. R. Himme, B. M. Sattlegger et al., Keeping the eIF2 alpha kinase Gcn2 in check, Biochim Biophys Acta, vol.1843, pp.1948-68, 2014.

P. R. Romano, M. T. Garcia-barrio, X. Zhang, Q. Wang, D. R. Taylor et al., Autophosphorylation in the activation loop is required for full kinase activity in vivo of human and yeast eukaryotic initiation factor 2alpha kinases PKR and GCN2, Mol Cell Biol, vol.18, pp.2282-97, 1998.

S. A. Wek, S. Zhu, and R. C. Wek, The histidyl-tRNA synthetase-related sequence in the eIF-2 alpha protein kinase GCN2 interacts with tRNA and is required for activation in response to starvation for different amino acids, Mol Cell Biol, vol.15, pp.4497-506, 1995.

R. Ishimura, G. Nagy, I. Dotu, J. H. Chuang, and S. L. Ackerman, Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation, eLife, vol.5, p.14295, 2016.

Z. Talloczy, W. Jiang, V. Hwt, D. A. Leib, D. Scheuner et al., Regulation of starvation-and virus-induced autophagy by the eIF2alpha kinase signaling pathway, Proc Natl Acad Sci, vol.99, pp.190-195, 2002.

J. Wengrod, D. Wang, S. Weiss, H. Zhong, I. Osman et al., Phosphorylation of eIF2alpha triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma, Sci Signal, vol.8, p.27, 2015.

W. B'chir, A. C. Maurin, V. Carraro, J. Averous, C. Jousse et al., The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression, Nucleic Acids Res, vol.41, pp.7683-99, 2013.

J. Ye, W. Palm, M. Peng, B. King, T. Lindsten et al., GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2, Genes Dev, vol.29, pp.2331-2337, 2015.

Y. Wang, Y. Ning, G. N. Alam, B. M. Jankowski, Z. Dong et al., Amino acid deprivation promotes tumor angiogenesis through the GCN2/ATF4 pathway, Neoplasia, vol.15, pp.989-97, 2013.

J. Ye, M. Kumanova, L. S. Hart, K. Sloane, H. Zhang et al., The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation, EMBO J, vol.29, pp.2082-96, 2010.

S. Shin, G. R. Buel, L. Wolgamott, D. R. Plas, J. M. Asara et al., ERK2 mediates metabolic stress response to regulate cell fate, Mol Cell, vol.59, pp.382-98, 2015.

J. Barretina, G. Caponigro, N. Stransky, K. Venkatesan, A. A. Margolin et al., The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity, Nature, vol.483, pp.603-610, 2012.

N. J. Dickens, B. A. Walker, P. E. Leone, D. C. Johnson, J. L. Brito et al., Homozygous deletion mapping in myeloma samples identifies genes and an expression signature relevant to pathogenesis and outcome, Clin Cancer Res, vol.16, pp.1856-64, 2010.

X. Z. Wang, B. Lawson, J. W. Brewer, H. Zinszner, A. Sanjay et al., Signals from the stressed endoplasmic reticulum induce C/ EBP-homologous protein (CHOP/GADD153), Mol Cell Biol, vol.16, pp.4273-80, 1996.

Y. Kozutsumi, M. Segal, K. Normington, M. J. Gething, and J. Sambrook, The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins, Nature, vol.332, pp.462-466, 1988.

H. P. Harding, I. Novoa, Y. Zhang, H. Zeng, R. Wek et al., Regulated translation initiation controls stress-induced gene expression in mammalian cells, Mol Cell, vol.6, pp.1099-108, 2000.

R. Martin, J. J. Berlanga, and C. De-haro, New roles of the fission yeast eIF2alpha kinases Hri1 and Gcn2 in response to nutritional stress, J Cell Sci, vol.126, pp.3010-3030, 2013.

H. Muaddi, M. Majumder, P. Peidis, A. I. Papadakis, M. Holcik et al., Phosphorylation of eIF2alpha at serine 51 is an important determinant of cell survival and adaptation to glucose deficiency, Mol Biol Cell, vol.21, pp.3220-3251, 2010.

R. Ravindran, J. Loebbermann, H. I. Nakaya, N. Khan, H. Ma et al., The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation, Nature, vol.531, pp.523-530, 2016.

A. Vlahakis, M. Graef, J. Nunnari, and T. Powers, TOR complex 2-Ypk1 signaling is an essential positive regulator of the general amino acid control response and autophagy, Proc Natl Acad Sci USA, vol.111, pp.10586-91, 2014.

H. Meyer and C. C. Weihl, The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis, J Cell Sci, vol.127, pp.3877-83, 2014.

R. M. Vabulas and F. U. Hartl, Protein synthesis upon acute nutrient restriction relies on proteasome function, Science, vol.310, pp.1960-1963, 2005.

A. Suraweera, C. Munch, A. Hanssum, and A. Bertolotti, Failure of amino acid homeostasis causes cell death following proteasome inhibition, Mol Cell, vol.48, pp.242-53, 2012.

D. R. Wise and C. B. Thompson, Glutamine addiction: a new therapeutic target in cancer, Trends Biochem Sci, vol.35, pp.427-460, 2010.

T. G. Anthony, B. J. Mcdaniel, R. L. Byerley, B. C. Mcgrath, D. R. Cavener et al., Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2, J Biol Chem, vol.279, pp.36553-61, 2004.

P. Bunpo, A. Dudley, J. K. Cundiff, D. R. Cavener, R. C. Wek et al., GCN2 protein kinase is required to activate amino acid deprivation responses in mice treated with the anti-cancer agent Lasparaginase, J Biol Chem, vol.284, pp.32742-32751, 2009.

G. J. Wilson, B. A. Lennox, P. She, E. T. Mirek, A. Baghdadi et al., GCN2 is required to increase fibroblast growth factor 21 and maintain hepatic triglyceride homeostasis during asparaginase treatment, Am J Physiol Endocrinol Metab, vol.308, pp.283-293, 2015.

P. Zhang, B. C. Mcgrath, J. Reinert, D. S. Olsen, L. Lei et al., The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice, Mol Cell Biol, vol.22, pp.6681-6689, 2002.

E. K. Schmidt, G. Clavarino, M. Ceppi, and P. Pierre, SUnSET, a nonradioactive method to monitor protein synthesis, Nat Methods, vol.6, pp.275-282, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00408410

G. Yu, L. G. Wang, Y. Han, and Q. Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, OMICS, vol.16, pp.284-291, 2012.

G. Csardi and T. Nepusz, The igraph software package for complex network research, InterJournal Complex Syst, vol.1695, pp.1-9, 2006.

T. Kind, G. Wohlgemuth, D. Y. Lee, Y. Lu, M. Palazoglu et al., FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry, Anal Chem, vol.81, pp.10038-10086, 2009.

V. Behrends, G. D. Tredwell, and J. G. Bundy, A software complement to AMDIS for processing GC-MS metabolomic data, Anal Biochem, vol.415, pp.206-214, 2011.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate -a practical and powerful approach to multiple testing, J Royal Stat Soc B Stat Methadol, vol.57, pp.289-300, 1995.